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ABSTRACT

We propose a type of admissible-region analysis for track initiation in multi-
satellite problems when angles are the primary observable. For a specified
rectangular partition in the space of orbital elements, we present explicit upper
and lower bounds for the values of range and range rate that will lead to initial
orbit hypotheses (data association hypotheses) associated with that partition.
These bounds allow us to parallelize the generation of candidate orbits, because
each element-space partition can be handled independently of the others.
Measured or derived angle rates provide additional bounds on range and range
rate, also permitting the same parallelism.

INTRODUCTION

The advent of high-sensitivity, high-capacity optical sensors for space surveillance presents us
with interesting and challenging tracking problems. Accounting for the origin of every detection
made by such systems is generally agreed to belong to the “most difficult” category of tracking
problems. Especially in the early phases of the tracking scenario, when a catalog of space objects
is being compiled, or when many new objects appear in space because of on-orbit explosion or
collision, one faces a combinatorially large number of tracking hypotheses to evaluate. The
number of hypotheses is reduced to a more feasible number, if observations close together in
time can, with high confidence, be associated by the sensor into extended tracks on single
objects. Most current space surveillance techniques are predicated on the sensor systems’ ability
to form such tracks reliably. However, the required operational tempo of space surveillance, the
very large number of objects in Earth orbit, and the difficulties of detecting dim, fast-moving
objects at long ranges mean that individual sensor track reports are often inadequate for
computing initial orbit hypotheses. In fact, this situation can occur with optical sensors even
when the probability of detection is high. For example, the arc of orbit that has been observed
may be too short, or may have been sampled too sparsely to allow well-conditioned, usable orbit
estimates from single tracks. In that case, one has no choice but to solve a data association
problem involving an unknown number of objects and many widely spaced observations of
uncertain origin. In the present paper, we are motivated by this more difficult aspect of the
satellite cataloging problem. However, the results of this analysis may find use in a variety of
less stressing tracking applications.
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Figure I - Vector Triangles

Assume that we have a pair of line-of-sight unit vectors W1 and Yz , measured at time 1 at
station position R1 and time £z at station position Rz, respectively. Assume, without loss of
generality, that £z > ;3. We want to test the hypothesis that these two observations are
associated with the same space object. To this end, we attach a set of hypothetical range values,

{p1m.m=12,.} and {p2.n . = 1.2, -} respectively, to each of these measured unit vectors,
and then generate candidate orbits by solving Lambert’s problem for each of the pair-wise
combinations of hypothetical orbital position vectors F1,m and Fz2.». With a large dataset of
measured line-of-sight unit vectors, we can, in principle, consider all possible pairs of
observations and solve the family of Lambert problems for each pair. Then each hypothetical
orbit from the solution of Lambert’s problem is a data association hypothesis that must be either
confirmed or eliminated through comparisons with other observational data. This approach
allows us to make use of an already proven method (the Search and Determine algorithm and
software, SAD) that was designed for generating and testing data association hypotheses for
position-type observations typical of radar sensors [9,10,11]. Given enough range hypotheses for
each observed line of sight, we are guaranteed to generate a viable candidate orbit for every
object that has been observed at two or more distinct times. However, the Cartesian product of
the set of range values for each observed line of sight with the sets of range values from every
other line of sight implies a possibly prohibitive number of Lambert solutions to generate and
check. The computational complexity for generating hypothetical orbits on this approach is
quadratic in the number of observed lines of sight and also quadratic in the number of range
hypotheses that we attach to the observations.

How should we limit the number of range hypotheses to make the total number of candidate
orbits manageable, while also generating candidates that are likely to correspond to real orbits of
interest? For example, we may be most interested in generating candidate orbits near the
geosynchronous equatorial orbital (GEO) belt. Let us seek to generate hypotheses for orbits that



lie only in a bounded region of semimajor axis @ , eccentricity € , inclination ! and right
ascension of the ascending node Q , namely, within a partition specified by the intervals

[amin »amax] | [evin s €max] | [Twvan o Imax] and [Qwman - @max] . (For the purposes of this
discussion, we leave the other orbital elements unconstrained. It will turn out that these four
elements constrain the possible values of range in simple ways without our having any recourse
to angle rate information.) Then, to the extent that we can restrict the generation of hypothetical
orbits to a specified partition of the space of orbital elements, we have parallelized the task of
building a catalog of objects detected within that partition. The reason is that any partition of the
space of orbital elements, including the whole space itself, can be sub-divided into smaller
partitions, and each sub-partition can be handled independently. In the approach outlined here,
all the observations would have to be considered for each sub-partition of the space of orbit
elements. However, by constructing upper and lower bounds on range for each sub-partition of
the element space, we limit the number of range hypotheses that have to be considered for each
sub-partition. This approach allows us to consider a manageable number of range hypotheses for
each sub-partition before we generate candidate orbits, simply by making the sub-partitions
small enough, so that the overall computation is feasible.

Our emphasis on generating candidate orbits with a Lambert-based approach is not merely a
matter of convenience in extending an existing method such as SAD. Certainly, the bounds on
range and range rate that we present here could be used in a variety of ways with other angles-
based initial orbit determination methods. All the traditional methods of angles-only orbit
determination, plus the modern methods of Gooding, Mortari and Karimi, and others [6,7,8,19],
rely on solving for the range by either a root-finding method or an optimization method. Such
algorithms can always be made to work more reliably when rigorous upper and lower bounds on
the unknown quantity are available. However, one encounters at least three difficulties in trying
to apply direct angles-only methods to a large, multiple-target catalog-building scenario.

First, although the range bounds presented here allow one to reject candidate solutions based on
range, with a direct angles-only method one still has to compute the range in terms of the
observations in order to find out if it satisfies the bounds. This turns out to be most of the
computation needed to produce the candidate orbits themselves. In the Lambert-based approach,
the range bounds allow us to avoid most of the potential computation for the candidate orbits.

Second, the direct angles-only methods do not scale to large problems as well as a Lambert-

based method does. Given N observations of line of sight, not necessarily close together in time,
the computational load of Lambert-based methods is proportional to N*, because two
observations per data association hypothesis are needed. The “constant” of proportionality is
itself quadratic in the number of range hypotheses that must be considered for each line of sight.
However, as noted above, the latter number can be driven down to manageable size in each
partition of the element space by making the partitions small. With traditional methods of angles-
only initial orbit determination, including that of Gooding [6,7], one faces a computational load
that is proportional to N* | because 3 observations must be associated together to compute the
range and hence the candidate orbit. The methods developed by Mortari and Karimi are more
robust than traditional methods, but these also require at least 3 observations per association
hypothesis. In fact, the approach of Mortari and Karimi [19] works better with more observations
per association hypothesis, but then one faces a computational load that scales like N*, N* or



even higher. In general, the computational complexity is polynomial in the number of
observations, with the polynomial degree equal to the number of observations per data
association hypothesis. Of course, it is not clear in general which approach finally requires fewer
processors to achieve a desired production rate of orbit solutions. Higher-degree scaling requires
more processors on the traditional range-solution approach and smaller element partitions require
more processors on the range-hypothesis approach. The choice may depend on the size and
character of the dataset itself.

Third, a Lambert-based method, ideally implemented, will produce a candidate orbit for every
real object that has been observed at least twice. In comparison, a direct angles-based method,
such as Gooding’s, will produce candidate orbits only for those real objects that have been
observed at least 3 times. An N* method will produce candidate orbits only for those real objects
that have been observed at least 4 times, and so on. Hence, the Lambert-based method may do a
more complete job of generating viable candidate orbits from real datasets, while scaling more
favorably than the direct angles-based methods for large numbers of observations.

We are seeking explicit bounds on range and possibly range rate that can be applied for each
individual angle-based observation, or at most to pairs of angle-based observations. Even with
the further restriction that hypothetical orbits be elliptical and Keplerian (which we accept) and
even allowing the possibility that the observation may include angle rate values (which we will
examine at length), it may not be obvious that efficient bounds having these properties can be
obtained. Exact bounds would have to be based on some admissible-region analysis of the type
developed by Milani, Tommei, Scheeres, Maruskin, Fujimoto and others [12-18]. For example,

denoting the gravitational parameter by ¥ , we write the first integrals of Keplerian motion as

energy: E = (r- '“'v:',*'z _H el (1)
angular momentum: h=rxr (i1)
Laplace vector: pue =r X (rxr)—ur (iii)
[

These can be evaluated with the vector triangle relation ¥ = R+ pu and its time derivative
r=R+pu+pu for each observation. Then, for each observation, we can define admissible
regions in the {7: £} plane for each partition in the space of elements by means of inequalities
such as

_H _Hu 1
/izaMlN ) = E= /izaMAx ) )

COSIMAX = (]1”h” ) -k = COSImN (V)

emiv = llell < emax (vi)

Here K is the north polar unit vector in the Earth-centered inertial frame. For each observation,
the values of range and range rate that satisfy these inequalities will result in orbits that lie only
within the given partition of the space of elements. DeMars and Jah [2] have shown what the
admissible regions look like for partitions of semimajor axis and eccentricity by a numerical
treatment of the above inequalities. Maruskin, et al. [3], have shown how the admissible regions
evolve in time and how the overlap of the admissible regions for different observations can help
solve the data association problem. However, even though expressions (i) through (vi) can be
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reduced to polynomial forms in range and range rate, each relation is coupled in both variables
and the polynomial degree is high, preventing us from obtaining explicit expressions for range
and range rate in terms of the given data. Moreover, the usual admissible-region analysis leads
nowhere if angle rates are not available. For example, the track-initiation method of DeMars, et
al.[1], involving multiple hypotheses on range and range rate, requires both angle and angle rate
values.

In the present analysis, we take a geometric and kinematic approach that does lead to explicit
upper and lower bounds on the possible values of range for each observation or pair of
observations, given only angle data at discrete times. In fact, we find several inequalities that
must be satisfied simultaneously, and we can take the most restrictive superposition of the
different bounds as our working result. In case angle rates are available, we can obtain explicit
upper and lower bounds on range rate, as well as additional bounds on range. It may happen that,
for a given observation, there are no values of the range or range rate that lead to orbits within
the given element-space partition, so that the observation can be eliminated from further
consideration. We obtain explicit conditions for the existence of possible values of range and
range rate, in terms of the observation itself.

The price for obtaining explicit bounds on range and range rate is that the bounds are not exact
but somewhat conservative. Although every orbit within the element-space partition corresponds
to values of range and range rate that lie within the bounds given here, some values of range or
range rate that satisfy the bounds may lead to orbits that lie outside the given partition. This
situation represents inefficiency in the parallelization of building the catalog: nearly the same
candidate orbits near the boundaries of the element-space partitions may be generated in both of
the adjacent partitions, if the range or range rate hypotheses are planted densely enough. On the
other hand, no candidate orbits within the given element-space partitions will be missed because
of the bounds given here. The extent and cost of the inefficient duplication of candidate orbits
will depend on the particular datasets and element partitions of interest, and may require further
study. In practice, of course, within any element partition, any of these extra orbit hypotheses can
be either kept or discarded. If they are kept, one would have, at most, a bookkeeping problem of
transferring the extra orbits to the correct element partition. The trade-off in this case is that
merely moving data between processors always takes time.

BOUNDS ON RANGE IMPLIED BY ANGLE VALUES
Here we present bounds on range that must hold for each observed line of sight. Assuming that

all orbits of interest are elliptical, require that the orbital radii lie between the maximum specified
apogee and the minimum specified perigee:

amin (1 — emax) = lIrll € amax(1 + epax) (1)

The values of range that correspond to these limits on orbital radius can be found explicitly using
the vector triangle relationship ¥ =R+ pu  Squaring terms to remove the radical, we have

apn(1 —emax)? =R-R+2(R-ulp +p? = afps (1 + epax )’ 2)



Consider the perigee and apogee cases separately. For the perigee case, we require the orbital
radius to be no smaller than the smallest allowable perigee radius:

a1l —emax)? =R-R+2(R-u)p +p? (3)
p*+2(R-u)p— [afyni1l—emax)2 —R-R] 20 4)

The roots of this quadratic are:

p=—(R-u)i\j(R-u)‘+[a§ﬂN(1—em}2—R-R] ©)

We will have real roots if and only if the argument of the square root is non-negative:
a1l —emax)? ZR-[R— (R -u)u] (6)

If no real roots of the quadratic expression (4) exist, then we can immediately discard the current
observation and form no hypotheses with it. The reason is that no value of the range will be
found for this observation, which is consistent with the specified intervals of the orbital elements.

Descartes’ rule of signs tells us the number of positive real roots. If the third coefficient in the
quadratic form (4) is negative, that is, if ayun(1 —emax)? > R-R , then, regardless of the sign
of the second coefficient 2(R-u} we will have one positive real root and necessarily also one
negative root. Because the quadratic is concave-up, the inequality is satisfied to the left of the
negative root and to the right of the positive root. We can ignore the negative root and all values
to the left of it, because we require a priori that range values to be non-negative. What remains is
a positive lower limit on the possible values of range:

Pz ~R-w+ [R-w? + [ay(1 - eyax)* R -R] (7

It is worth noting that, for Earth-bound stations, the third coefficient of (4) will essentially
always be negative, because the inequality @wn'1—emax)?> > R-R s approximately the
condition that the minimum allowable perigee radius be larger than the Earth radius. Moreover,
the second coefficient 2(R - u} will essentially always be positive, because observations have to
be taken above the local horizontal plane at some positive local elevation angle. For space-based
observing stations, it is possible that neither of these circumstances would be true: the station’s
orbital position may be higher than the minimum specified perigee radius, or observations may
be taken at negative local elevation angles, or both.

If the third coefficient in (4) is positive, that is, if ayun(1 —emax)? <R-R then the quadratic
will have either no positive real roots or two positive real roots, depending on the sign of the
second coefficient. This is the possibility just mentioned for space-based stations, although we
do not expect this possibility for Earth-bound stations unless we are interested in orbits with
perigee radii less than the Earth radius. If, furthermore, the second coefficient in (4) is positive,



that is, if (R-u)}> 0  then we have no positive real roots, but only a pair of negative roots.
Because the quadratic is concave-up, the inequality (4) is satisfied to the left of the more
negative root and to the right of the less negative root. However, since we require a priori that

range values be non-negative, we are left merely with the condition that # =0  If the second
coefficient is negative, that is, (R-u} < 0 meaning that the observation is taken at negative
local elevation angle, then the quadratic will have two positive real roots. Because the quadratic
is concave-up, the inequality (4) will be satisfied to the left of the smaller root, that is, between
P =0 and the smaller root, and also to the right of the larger root. In this case, we have two

disjoint intervals of range, one finite and one semi-infinite, over which range hypotheses will
satisfy the perigee constraint:

0=p S—(R-u)—\j(R-u)’+[a§m'ﬁ'1—emﬁ'2—R-R] ®)

p=—R-w+ j(R-u)* + [afun(1 — emax )2 — R -R] ®

Now we consider the apogee case and seek to derive results that are analogous to those above.

The apogee case will provide us with conditions on values of the range that are complementary
to those of the perigee case. Since both sets of conditions must be satisfied simultaneously, we
can take the most restrictive superposition of all conditions on range to define the set of values
over which we must form range hypotheses.

For the apogee case, we have from the inequality (2) that the orbital radius must be no larger
than the maximum allowable apogee radius:

R-R+2(R-ulp+p? € al,1x (1 + emax)? (10)

p*+2(R-u)p— [afax(1+emax)? —R-R] =0 (11)
The roots are:

p=—(R-u)i\f(R-u)’+[a§w('11+em)2 —R-R] (12)
We will have real roots if and only if the argument of the square root is non-negative:
afax(1+emax)? ZR-[R— (R -uu] (13)

If no real roots exist, then we can immediately discard the observation and form no hypotheses
with it. The reason is that no value of the range will be found for this observation, which is also
consistent with the specified intervals of the orbital elements.

Assuming that we have real roots in equation (12), we use Descartes’ rule of signs to determine
the number of positive real roots. If the third coefficient in the quadratic form (11) is negative,
that is, if @max(1 + emax)? > R-R then, regardless of the sign of the second coefficient
2(R-u) | we will have one positive real root and necessarily also one negative root. Because the
quadratic is concave-up, the inequality (11) is satisfied between the roots. Moreover, we require
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a priori that range values be non-negative, so we can say without loss of generality that the

inequality will be satisfied between # = 0 and the positive real root. The result is that we have
an upper bound on the possible values of range:

05p£—(R-u)+J(R-u)’+[a§aﬂ'ﬁil+emﬁlz—R-R] (14)

It is worth noting that, for Earth-bound stations, the third coefficient will essentially always be

negative, because the inequality @nmax(1+emax)* > R-R g approximately the condition that
the maximum allowable apogee radius be larger than the Earth radius. Moreover, the second
coefficient 2(R - u} will essentially always be positive, because observations have to be taken
above the local horizontal plane at some positive local elevation angle. For space-based
observing stations, it is possible that neither of these circumstances would be true: the station’s
orbital position may be above the maximum specified apogee radius, or observations may be
taken at negative local elevation angles, or both.

If the third coefficient in (11) is positive, that is, if ayax(1l+emax)? <R-R  then the quadratic
will have either no positive real roots or two positive real roots, depending on the sign of the
second coefficient. This is the possibility just mentioned for space-based stations, although we
do not expect this case for Earth-bound stations. If, furthermore, the second coefficient in (11) is
positive, that is, if (R-u}> 0 then we have no positive real roots, but only a pair of negative
roots. Because the quadratic is concave-up, the inequality (11) is satisfied between these roots.
However, since we require a priori that range values be non-negative, we can discard this
particular observation and form no range hypotheses for it.

If the third coefficient in (11) is positive, but the second coefficient is negative, (R-u} <0
meaning that the observation is taken at negative local elevation angle, then the quadratic will
have two positive real roots. The quadratic is concave-up, so the inequality (11) will be satisfied
between these two roots. In this case, we have a single finite interval of range over which range
hypotheses will satisfy the apogee condition:

pz—R-w- [R-w? +[afux(1+eyax)2 ~R-R] (15)

pS—(R-u)+\;j(R-u)’+[a§mx(1+em)2—R-R] (16)

The set of range values over which we may have to form hypotheses for the observation in
question is given by the intersection of all of the above conditions, both perigee conditions and
apogee conditions.



BOUNDS ON RANGE IMPLIED BY ANGLE VALUES, INCLINATION LIMITS AND
NODAL LIMITS

The above conditions are bounds on the possible values of range, which can be computed for
each single observation. The fact that only single observations are involved is what allows us to
find explicit bounds for each of the ranges before we form any range hypotheses. However, at
least five additional restrictions on the allowable values of range can be deduced from relations
that involve both of the ranges presented for a solution to Lambert’s problem. Although the
nonlinearities in these relations prevent us from getting explicit inequalities like (7) — (9) and (14
— (16), nevertheless we can formulate additional conditions that 21 and £z must satisfy.
Checking these extra conditions for each range pair may keep us from having to produce some
unnecessary and relatively expensive Lambert solutions.

Using the vector triangle relation T =R+ pu for each of the two lines of sight, compute the unit
vector 1 normal to the candidate orbital plane:

iy xry) 17
n=t" z/llrlxrzll (17

Here the ambiguous sign has to be resolved a priori. The choice depends on whether the angle

between the position vectors (mod 2z ) exceeds T or not, distinguishing between “long-way”
and “short-way” orbits. With the sign chosen, the inclination is given unambiguously by

cosI=n-k (18)

The inclination of the candidate orbit lies in the specified interval [/mn - /max] provided that
cos! lies in the interval [€0sImax ,cosImv] . Hence we require that

COSIMAX = n-k = COSIMN (19)
In the case of low-inclination intervals, it may be better to work in terms of sine inclination:

(20)

SinlM[N = "1_':n'k:‘2 = SinIMAx
N

In a similar way, we use the unit nodal vector to obtain conditions that the range pair must satisfy
if the candidate orbit is to lie within a specified interval of right ascension of the ascending node,
[Omin - 2max] . In the Earth-centered inertial frame, we have

(kxn) _ . T 21
/Ilkxnll (cosQ,sinQ, 0) (21)
so that, following standard logic for quadrant resolution, we require

Qumy = tan™? : sm.Q.:,-'COS _Q:' = Oumax (22)



Of course, for important special cases like near-GEO orbits, it may be preferable to define
.- . . mna cinll
element-space partitions in terms of nonsingular elements such as P = sin('/3)cosQ apq

q £ sin(’/ 2)sinQ N, special difficulty attaches to working in terms of these or any other
elements related to the orbit plane.

If any range-pair hypothesis {P1 22} does not satisfy all of the above conditions, then that pair of
values can be eliminated from further consideration without solving Lambert’s problem. The
reason is that the geometry of the pair either will not allow an orbital inclination within its
specified interval or will not allow a right ascension of the ascending node within its specified
interval. Note that it is the pair of range values that is eliminated; either range value by itself may
still lead to an acceptable hypothesis in combination with some other range value.

BOUNDS ON RANGE IMPLIED BY ANGLE VALUES AND LAMBERT’S THEOREM

Next, we can use three special solutions of Lambert's problem to restrict the ranges. The
eccentricity of the orbit of least possible eccentricity that goes through a given pair of position
vectors can be computed solely in terms of those position vectors. Call it €a . Likewise, the
semimajor axis of the orbit of least possible semimajor axis that goes through the pair of
positions can be computed solely in terms of the position vectors. Call it @e . Hence, for each
hypothesized range pair (P12} , we compute the corresponding position vectors and apply the
following logic:

If @ > @max , then reject the hypothesis pair without solving Lambert's problem,
because the geometry is guaranteed to produce a larger semimajor axis than we
have specified.

If €0 > €max , then reject the hypothesis pair without solving Lambert's problem,
because the geometry is guaranteed to produce a larger eccentricity than we have
specified.

Of course, even for a {P1,P2) hypothesis that passes all of the above tests, the actual solution of
Lambert's problem may still turn out to get rejected once we have computed the elements of the
candidate orbit. The reason is that none of the conditions on range derived so far involves the
minimum allowable eccentricity, #min . This fundamental feature of our problem raises the
question of how well we can limit the generation of candidate orbits to lie within the given
eccentricity interval. Let us assume that the hypothetical range pair is not rejected by the above
criterion, so that €s = €max . Assume also that all of the range bounds and other conditions that
depend on single observations have already been applied. Then we know that the Lambert
solution for a pair of range hypotheses will not produce an orbit having an eccentricity outside
the interval [€e - emax] . If emin = €0 , we have no difficulty: the candidate orbit will have an
eccentricity within the given interval [emin -emax] . However, if €0 < €min , then the eccentricity
of the candidate orbit may or may not lie within the specified interval. The Lambert solution has
to be generated and then, either kept if the eccentricity is at least as large as emin  or discarded if
the candidate eccentricity turns out to be less than €min . This represents some inefficiency in the
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generation of candidate orbits, especially if those same candidate orbits were to be generated in
the processing for other element-space partitions. (Naturally, one could simply move the
discarded orbit to its correct element partition, though even that operation involves
computational overhead.) The extent of the overall inefficiency depends on the dataset and the
actual element-space partitions being used, so we cannot draw general conclusions. It would be
helpful at this point to have reasonably sharp bounds on the actual eccentricity in the Lambert
problem without having to solve the whole problem. However, lacking that, we have no better
recourse than to generate the candidate orbit. Overall, we do expect to be able to reduce the
number of Lambert solutions that have to be generated, compared to the number required
without the above checks involving @e and €e.

The formulas for @e and €e are well known, but the derivations are short and illuminating. An
ellipse has the property that the sum of the radii from the two foci is constant. In particular,

n 41y =2a and 2 475 =2a (23)

koo

where a superscript denotes distance from the vacant focus. Therefore

ntntn +ry =4a (24)

Hold the position vectors T1 and Tz fixed and vary the semimajor axis by moving the vacant
focus throughout the plane of the orbit. The sum 71 + 72 reaches a global minimum when the
vacant focus lies on the chord between Ti and Tz . In fact, the radii from the vacant focus obey
the triangle inequality

41y 2 il (25)
We conclude that the minimum possible semimajor axis is given by

40 = ey 1+ lirz Il + lirz — 1o I (26)

The eccentricity vector of minimum possible length can be obtained by considering the equation
of the orbit:
h? h2 2
= # and rp=— B .
' I 2 1+e-12
L e 4y

Here @ is the eccentricity vector, R is the angular momentum magnitude and # is the
gravitational constant. Then

"z/ﬂ=‘r1+e-r1 and "2/“='rz +e-r, (28)
nte-ry=rte-r, (29)
e-{p—npl=n-n (30)
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This shows that, for given position vectors in the Lambert problem, the locus of possible
eccentricity vectors is a straight line normal to the chord vector in the orbital plane. The
eccentricity vector varies with time of flight £z — £1 in such a way that its projection on the chord

vector € = Iz — I3 is a constant, namely, the signed difference ™ — 7z . Therefore, the
eccentricity € = llell has no maximum value in the Lambert problem, but it does have a

minimum value when € is aligned with the chord vector. That minimal-length eccentricity
vector can be written down directly in terms of the chord vector:

e, €VE [, Ta—T \Ta—Ty 31)
e = e IkH)HCH (e |ha-—xan)|ha-—xan

Using (30) to rewrite the scalar product, we have

_[(h™h r—r, (32)
. ﬁm—qﬂm—nu

from which we get

T 1 || = [Ie2 (1] (33)

rs
e,=eo-eo=(—) or gg=
fir; —ryl liry —ryll

Finally, we quote without proof a statement of Euler’s Theorem, a special case of Lambert’s
Theorem, which expresses the time of flight Afp between given position vectors on a parabolic
(zero-energy) orbit:

4 'al
Atp = —2(1-52%) (33a)
3 JH ’
Here the quantity 5 is a signum function: § = +1 for “short-way” trajectories and S = —1 for

“long-way” trajectories. The parameter 4 is defined in terms of the position vectors:

0<% = ey ll + liez il — lirz —ry I <1 (33b)
lies 1+ liez ll+ lirz — gl

Because, for given position vectors, the time of flight in Lambert’s problem is a monotonic

decreasing function of the orbital energy, elliptic (negative-energy) orbits will always have a

time of flight longer than the parabolic time, and hyperbolic (positive-energy) orbits will always

have a time of flight shorter than the parabolic time. In our case, we can require that our

observation pairs and range hypotheses always produce elliptic orbits:

t, —t, > Atp (33¢)

Combinations that do not satisfy this condition can be eliminated without generating a Lambert
solution.

Given an observation pair W1 and Yz , the previous formulas, and the associated logic, can be
used to decide if a hypothetical pair of ranges should be used to generate a Lambert solution. Of
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course, whatever Lambert solutions are generated should be verified for compliance with the
specified interval of eccentricity, because none of the conditions on range derived so far depends
on the value of the minimum allowable eccentricity €min .

13



BOUNDS ON RANGE IMPLIED BY ANGLE AND ANGLE RATE VALUES

In case the observations include, or allow us to derive, angle rates, we can deduce additional
bounds on the possible values of range. Like the bounds derived above from perigee and apogee
distances, these extra bounds will apply to single observations, where we now understand an

observation to consist of the values (R,R. 1.1} at a known time. Differentiating the vector
triangle relation ¥ =R+ pu | we get the orbital velocity at the observation time:

=R+ pu+pu (34)
The time derivative of the line-of-sight unit vector contains the angle rates in the following way.

In terms of topocentric right ascension @ and declination ¢ , the observed unit vector is

cosd sina
sind

{COS 0 cos a} (35)
u=

Differentiating with respect to time, we get

—dsindsina+acosd cosa
+d8 cosd

{—6 sind cosa —a cosd sin a} (36)
u=

It is straightforward to verify the identities =@ =1 and u-0@ =0 _ We note also that the
expression (@-1} which occurs frequently in the following development, has a convenient and
intuitive interpretation:

(- 1) = sin® 8 (cos? & + sin® @) 8% + cos? & (sin® @ + cos? &) &2 + cos? § 4% (37)
(a-0)= 8% 4 cos?d &2 (38)
Hence (@ -1) is just the square of the total apparent angular rate. A similar expression would

hold if the observation had been made in terms of azimuth and elevation angles and the rates of
these. For short target detection streaks on the camera focal plane, the quantity

(88)* + cos® & (Aa)* s just the square of the length of the streak on the plane of the sky and the
corresponding time difference Af would be the time elapsed between the endpoints of the
streak.

Now the magnitude of the velocity of the space object is obtained from

IElP = - =R-R+2pR-u+2pR-u+p% + pa-u (39)

Here we have used the identitiesW-u =1 gnd u-@ =0 | the latter of which has the effect of
removing terms that contain both range and range rate. The bounds we seek are based on the fact

14



that T - T has a maximum value at perigee and a minimum value at apogee. In particular, the
energy equation evaluated at perigee and apogee gives us

.. uil+e uil—e 40
(!‘ : r)Perigee = E'-. 1—¢ ." and \r- rv-'apogee = E(l r 9) ( )

The largest value of (I - Flperigee occurs at the lowest allowable perigee and the smallest value of
(- Flapogee occurs at the highest allowable apogee:

(e Flune = P ':_1 + emax "" and (F-5) __Hk (1 - GMAX) (41)
M gy 1 — emax CMIN T g uax \1 + eyax

With the observational data given, the speed of the space object is a function of only two
variables:
flo.p)2(-1)=R-R+2pR-u+2pR-u+p*+p*u-u (42)

It is worth noting that if we happen to have zero apparent angular rate at the moment of an

observation, that is, if @ =0 _ then f{p. 9} is independent of range at that moment. This
situation means that apparent angular rate does not restrict the range at that moment, although
some restriction on range rate must still exist. We address this special situation later.

The quadratic function f(. £} is concave-up with respect to both # and # . Consequently the

speed does not have a maximum with respect to # and 2 , but it does have a single, smooth,
interior minimum defined by

of / 3= 0 and af ap =0 (43)

It is straightforward to find out that this global minimum of 2. A} occurs at the values

R-u
LI )

p=-

The global minimum of (2. A} is then

R -11)]. o2 [
_(R .)]R-il-l-[—(R-u)] + )

fee éf(-M,-(n.u))= R-R+2[~(R-u)|R-u+2

(it-11) (a-u)
oo e a3 (Rew) (46)
f*=R-R-(R-u) - T
NP PR (R- )i (47)
f —R-[R—(R-u)u— (u-u)]

Resolve the station velocity in the following orthonormal basis:
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R=(R-u)u+(R-%“)%Iﬁ.(k.(uxﬁ))(ux%“) (48)

We see that the square bracket in equation (47) is just the third component of the station velocity
in this orthonormal basis, so that

f = R[(R(uxﬁ“))(uxﬁ“)] [ (ux%“)] (49)

In any case, " is the square of the smallest possible orbital speed that is consistent with given
valuesof R ,u apdu .

The value /™ may not be physically realizable if the minimizing range value in (44) happens to
be negative, although it is always a global lower bound on the possible values of orbital speed-

squared. In case (R-uj<o , the minimizing value of range is positive so the value £ is

physically realizable. On the other hand, if (R-1) >0 then the minimizing value of range is
negative. In the latter case, we can find an associated constrained minimum that is physically

realizable. Because the value of f{p. 2} is monotonic in 2 as we move away from the global
minimum value f* in any direction, we consider the value of the speed-squared at the first non-

negative value of range that we come to, namely, # =0 :
fr27(0,~(R-u)) (50)

Necessarily we have f(0.0} = f* = f*™ because we require a priori that range be non-negative.
However, if (R*1)>0 then f*  rather than f*" , is the square of the smallest possible

orbital speed that is consistent with given values of R u gpd o, Evaluating the speed-squared
(42) as in the definition (50), we get

FP=R-R+2[-(R-u)]R-u+2[0]R-a+[-(R-u)]" +[0)* a-u (51)
f*=R-R-(R-u)’ (52)
f*=R-[R-(R-uu] (53)

The square bracket is the projection of the station velocity on the plane normal to the line of
sight. In terms of the orthonormal basis in equation (48) above, we could also write

=g (- (o) (o ) o
[ (gl = () (55)
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The distinction between the global minimum f** and the physically constrained minimum f~
will become important later when we consider bounds on range rate. Until then we are seeking
bounds only on the range.

Consider the perigee case, and require the orbital speed-squared to be at most equal to the
specified maximum orbital speed-squared. Using equation (42), we can write

u (1 + em) (56)

1 —emax

flo.p)=R-R+2pR-u+2pR-u4+p*+p*n-u=

amiN

We note that this inequality still holds if we evaluate f(2. ) at its minimum with respect to 2, a
minimum which is always physically realizable as long as the range is non-negative a priori:

u (1 + em) (57)

MIN

flo,—R-w) = .

1—emax

This derived inequality is independent of range rate and is a condition that has to be satisfied by
the range when we have both angle and angle-rate values available. The substitution for # lowers
the value of f{p. #} compared to the value we would have had with the true (non-minimizing)
value of 2 , in effect relaxing the condition on range. However, with only angle and angle-rate
values available, we apparently cannot do any better with the expression (56) if we want an
explicit bound on range a priori.

Rewriting (56) with the substitution (44) for 2 , we get

R-R—(R-u) +2pR a4 p?a-in s - (i*jm) (58)
MIN — EMAX

: 1+e e s .
(il-l'l)p’+2(R-ﬁ)p—{a£[N(1ime)—R-[R—(R-u)u]} <0 (59)

According to equation (53) above, we could re-write this as

(1'1-1'1)p3+2(R-1'1)p_{ H "‘1+€Mﬁx"'_f.} < 0 (60)
amiv ' 1 — emax /
The roots of this quadratic are
—— — - - 2 - — *
p (u-u){ (R u)i\:(R u)? + u)[amm 1 e f }

We will have real roots if and only if the argument of the square root is non-negative:

]
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R-\R—(R-u)u—(nlﬁ)u]'C L (1 o) ©

(-u) |~ amn \1 — emax

According to equations (47) and (49) above, the left side of this inequality is the global minimum
of the square of the orbital speed:

=[] = ot () (64)

For given values of R | @ and @, if this necessary and sufficient condition for the existence of
real roots of the quadratic expression (59) is not satisfied, then there are no possible values of
range that will produce orbital speeds less than the specified maximum orbital speed. In that
case, we can discard the observation without forming any range hypotheses.

For space-based stations, the observing geometry can vary widely and we cannot easily judge in
advance how often the condition (64) for the existence of real roots might be satisfied. However,
for Earth-bound stations, we can be more explicit. Because the square bracket in (64) is a
projection of the station velocity, its magnitude is always less than or equal to the station velocity
magnitude. The projection vanishes if and only if the station velocity is in the (.} plane.
Hence, we can write

ua

0= [R-(uxm)]z <R-R < (Rgwg)?

(65)

In this expression R is the equatorial radius of the Earth and @& is the angular velocity of the
Earth in the inertial frame. The product {Re@g) is the station velocity magnitude on the equator,
which is the largest velocity magnitude for any position fixed on the surface of the Earth.
Consequently, we will have real roots for the quadratic expression (59) if

U (1 + em) (66)

‘:RECUE :'2 =
1 - emax

amin

This condition will usually be satisfied in practice because of the relative smallness of ®§ and
the relative largeness of # . For example, we will have real roots provided that

CcDu3;
u 1+ EMAX ' 1 ‘CTU? 1+ eMAX ! 1+ EMAX (6
= | | = = - l _ 7)
(Rgwg)?\1—emax/ ¢  2mrrad /806.81sect) ‘1T eMax’ \1 = emax
| (1 CDU) | gg T4 sec. |~ 1CTU

I

amIN =

Now, assuming that real roots for the quadratic (60) do exist, we consider whether the quadratic
has any positive real roots. Descartes’ rule of signs tells us that (60) will have one real positive
root, and, therefore, also one negative real root, if the third coefficient is negative, regardless of
the sign of the second coefficient. The third coefficient is negative provided that

18



f*=R-[R-(R-ulu] < a::m

)

This condition must hold for observations from both Earth-bound and space-based stations. The
square bracket is the projection of the station velocity on the plane normal to the line of sight, so
its magnitude must be less than or equal to the station velocity magnitude. Hence, for Earth-
bound stations, we can reason as before that we are guaranteed a single positive real root
provided that

0=R-[R-(R-ulul =R-R <= (Rgwg!? <

U (1 + eMAX) (69)
amn \1 — emax

This expression is essentially the same as (66) above. We conclude that, in most practical cases,
we can expect one real positive root and, therefore, also one negative root. Because the quadratic
is concave-up, the inequality (60) will be satisfied between the roots. Excluding negative values

of the range a priori, we can say in practice that the inequality is satisfied between # =0 and the
one positive root:

1
0=p<
P=a-

f . 70
~R-0+ (R-u)’+(u-u)[ = 1+e”‘“)— f]} 70
N

amin \1 — emax

If the third coefficient in (60) is positive, then we will have either zero or two positive real roots,
depending on whether the second coefficient is positive or negative. If, in this case, the second

coefficient is negative, (R-1) <0 | then we will have two positive real roots. The quadratic is
concave-up, so the inequality is satisfied between the two positive roots:

] 1 71)
o _r . _ i (1+em)_ . (
p= (u-u){ (R-u) \1(R u)? + (a u)_aM[N e~ f ]
! rewe @0 @ ol (Lhomer) (72)
p= (u-u){ (R u)+\1(R u)? + (a u).aM[N T~ f ]

If both the second and third coefficients in (60) are positive, we have no positive real roots, only
two negative roots, and the inequality is satisfied between them. In this case, we can discard the
observation and form no range hypotheses for it because we exclude negative values of the range
a priori.

Hence, whenever we have one or two positive real roots, we will have an upper bound on the
possible values of the range 2 :

73
p< ~R-0)+ (R-u)=+(u-u)[ £ 1+e“‘“)— f]} "

(o -1 N amn \1 — emax
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This upper bound, based on maximum orbital speed at perigee, is compatible with the observed
angular rate values and also compatible with the specified limits on semimajor axis and
eccentricity. There might also be a positive lower bound as in the inequality (71) described
above.

Now consider the apogee case. We require that the orbital speed be no smaller than the smallest
allowable orbital speed:

4o (1—emax .
(1 + em) = f(P-P)

(74)

Qmax

The problem here is to assign an upper bound with respect to £ to the function (0.9}, when no
interior maximum with respect to range rate exists. If we can assign such a bound, we are left
with a quadratic expression involving only range. Necessarily, any a priori assignment,
depending only on the observation, must be somewhat arbitrary. If we assign a too-optimistic
(low) upper bound, then the condition to be satisfied by # will be too constrained and we may
miss some values of range that would otherwise lead to candidate orbits within the given
element-set partition. If we assign a too-conservative (high) upper bound, then the condition to
be satisfied by 2 will be too relaxed and we will have to check possibly many range values that
lead to orbits outside the given element-set partition. In practice, missing possible candidate
orbits is a more serious error than having to check too many cases, because the overall
computation is parallelizable. Hence, we want to be somewhat conservative in how we assign the
upper bound, but we do not want to be overly so.

Recall from equation (42) and following expressions that the global minimum of (2. ) with

respect to # occurs at the special value # = —(R-u)} Moreover, the function f. 0) is
monotonic-increasing with respect to £ as we move away from the global minimum. It is also
symmetric with respect to the minimum along the £ axis. Therefore, we will seek to move to a
value of # that is as far from this global minimum as possible, while still being consistent with
the given element-set partition and the given observational data.

The largest allowable magnitude of # would occur when the station velocity is aligned with the
orbital velocity and the latter is at its maximum magnitude, namely at the lowest allowable
perigee:

(75)

Phwax = IR+ ——1
./ @MIN !
if (R-u)>o0 , 5o that the global minimum of (. £} occurs at a negative value of range rate,

then the value +1Plmax will be farther from the minimum than the value —lPlmax will be. On the

other hand, if (R-u)<o , so that the global minimum of f {p. P} occurs at a positive value of
range rate, then the value —lflmax will be farther from the minimum than the value +l/lmax
will be. Consequently we adopt the following logic:

If(R-u)>0 then we take F(o. +1olmax) as the desired upper bound.
If(R-u) <0  then we take f{0. —19lmax) as the desired upper bound.
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Note that the appropriate sign on lPlmax is the same as the sign of (R-u) | Therefore, these two
cases give the same value of the upper bound on f{p. £} when we evaluate equation (42):

Fip|plmax) = R-R+ 2plyax [(R-u)| + 2pR -0t + (| pl max)? + p* 1 -1 (76)

With this expression, we rewrite the apogee case (74) as

u (1-— E-’MAx) . (77)
(T2 < o hua)
1- L. .
= ( em) = R-R+2|plpax 'R-ull + 2pR -0 4 (| plmax)? + p% u -0 (78)
amax \1 + emax
(.7 ‘.. _ H 1_eMAx_ (79)
p*(@-u)+ 2p(R-u) [amx(1+9m) C] =0
Here the quantity C , defined as € 2 R-R+ 2lplyax |(R-ull + (| plmax)? | is always non-
negative. The roots of the quadratic are
= —(R- (R-a)? . -
P= u){ (R-a)+ \_5(R w)? + u)[am T c
We will have real roots if and only if the argument of the square root is non-negative:
1 _
05(R-u)’+(u-u)[ = ( em)—c] (81)
amax \1 + emax

If this condition is not satisfied, then we can eliminate this particular observation from further
consideration. The reason is that no value of the range will be found that is consistent with both
the observational data and the given element-set partition.

Investigating this condition for the existence of real roots more closely, we substitute for 12lmax
in the definition of € :

I (82)

C=R-R+2

f 1+e i . ! f1+e Y
i+ - ( ““) IR-wi + [[IR] + | ZTMAx |
y amin \1 — emax a

(83

1+ emax ] {1+ epax '
C = 2IRIF + 2RI IR; - u)l + 2I(R - w)l r s ( )+2|IRII ] |+ ( )
\ EMIN 1 - emax \ GMIN 1-emax/ MmN

Consequently, the following inequality always holds, even for zero station velocity:
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{1+ emax " 1 — emax 84
C = i [ | + non-negativeterms > = ( ) (84)
! 1+ EMAX

am ' 1 — emax Qmax

This means that the third coefficient (the constant term) in the quadratic form (79) is always
positive, given this choice of € . Assuming that real roots exist, the quadratic will have either

zero or two positive real roots, depending on the sign of the second coefficient. If (R-a)>0 ,
then we have no positive roots, only two negative roots. The quadratic is concave-up so the
inequality is satisfied to the left of the left-most root and to the right of the right-most root.

However, this condition reduces merely to 2 = @ because we require a priori that the range be

non-negative. If the second coefficient is negative, (R-u)j<o , then the quadratic has two
positive real roots. Again, because the quadratic is concave-up, the inequality is satisfied

between 2 = 0 and the left-most root and to the right of the right-most root:

1 { _f 2 4 (1—emax) ] (85)
0=p< (u-u){ (R-u) <(R-u) +(u-u)[am(1+em) c }
1 r U [1—emax (86)
pz (fl-ﬂ){_(R-U)-'-\(R.U)z+(u.U)[amx(1+eMAx)_C]}
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BOUNDS ON RANGE RATE IMPLIED BY ANGLE AND ANGLE RATE VALUES

Although bounds on the allowable values of range rate are not needed in a Lambert-based track-
initiation method, they may be useful in other types of track initiation and data association.
Moreover, kinematic inequalities that must be satisfied by range rate still apply, even if the range
rate will not be used to form the orbit hypotheses. The inequalities may, therefore, help us
eliminate some observations before hypotheses are formed. It is straightforward to use the

quadratic form (. A} in equation (42) to derive such bounds. By evaluating /(. #} at its
minimum and maximum with respect to # we are left with conditions to be satisfied by 2 .

A complication arises with bounding the range rate that we did not have in bounding the range.
The global minimum orbital speed f*° may or may not be physically realizable, depending on
the sign of (R} If we have (R*)=0 | then the range corresponding to f** is non-
negative, and the global minimum orbital speed consistent with the given data is indeed
physically possible. However, if we have (R-1)>0 | then the range corresponding to £ is
negative, and the global minimum orbital speed consistent with the given data is not physically
realizable. In this case, we use the constrained minimum f~, which correspondsto # =10 |

Assume that (R-) =0 s that f** is physically possible, and consider the perigee case. From
the inequality (56) we require that the orbital speed-squared be no greater than the specified
maximum allowable orbital speed-squared:

u (1 + em) (87)

flo.p)2R-R+2pR-u+2pR-u+p%*+ p*n-u=
amin

1 —emax

This inequality still holds true if we evaluate the range at its speed-squared-minimizing value
using equation (44):
(a-u)

~ amiv \1 — emax

This substitution has the effect of lowering the value of f , thereby relaxing the restriction on 2
compared to what we would have had with the actual value of range. However, this inequality is
now independent of the range and simplifies as follows:

o ) [ (®-0)a o
p’+2(R'“)p'{a:m(t:m)_R'[R'(m-ﬁ))]}50

The roots of this quadratic are

. (90)
L (b oG]

amn \1 — emax (a-u)

p=-(R-u)x [(R-u) +
N
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In order to guarantee that the roots are real, it is necessary and sufficient that the argument of the
square root be non-negative:

R.\R—(R-u)u—(R'ﬁ)u]-c K (1+em) O

(-u) |~ amv \1 — emax

According to equations (47) — (49) above, the left side of this inequality is simply the global
minimum of the square of the orbital speed:

=i (o] = ot (o) (92)

For a given observation, if this necessary and sufficient condition for the existence of real roots
of the quadratic expression (89) is not satisfied, then there are no possible values of range rate
that will produce orbital speeds less than the specified maximum orbital speed. In that case, we
can discard the given data without forming any range or range rate hypotheses.

For space-based stations, the observing geometry can vary widely and we cannot easily judge in
advance how often the condition (92) for the existence of real roots might be satisfied. However,
for Earth-bound stations, we can be more explicit. Because the square bracket in (92) is a
projection of the station velocity, its magnitude is always less than or equal to the station velocity
magnitude. The projection vanishes only if the station velocity is in the (.1} plane. Hence we
can write

: (93)

0= [R-(uxg)] = R-R < ®Rpop)®

Consequently, we will have real roots for the quadratic expression (89) if

‘:REOJE :'2 =

K (1 + eMAX) %94)
ammv \1 — emax

This condition is the same as (66) above, so we can usually expect to have real roots in the case
of Earth-bound observations.

Now, assuming that real roots for the quadratic (89) do exist, we consider whether the quadratic
has any positive real roots. Descartes’ rule of signs tells us that (89) will have one positive real
root, and, therefore, also one negative real root, if the third coefficient is negative, regardless of
the sign of the second coefficient. The third coefficient is negative provided that

R_[R_(R-u)u]< u (1+em) (95)

(a-ua) amiv \1 — emax

This condition must hold for observations from both Earth-bound and space-based stations, if we
are to have one positive real root of the quadratic (89). The square bracket is a projection of the
station velocity, so its magnitude must be less than or equal to the station velocity magnitude.
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Hence, for Earth-bound stations, we can reason as before that we are guaranteed a single positive
real root if

[R _(R- u)u u (1 + em) (96)

R R':'REOJE'Z

amin \1 — eymax

This expression is essentially the same as (94) and (66) above. We conclude that, in most
practical cases with Earth-bound stations, we can expect one real positive root and, therefore,
necessarily also one negative root. Because the quadratic is concave-up, the inequality (89) will
be satisfied between the roots:

| - o) ©7)
. (. 3 [ 43 7} 1+ emax e -u u]
2 ~(R-u) \(R u) +_aM[N(1_eMAX) R [R W
| [ RN (98)
e (1 2 po(1+emax) ._(R-u)u
- (RIU)+\(R.U) +_aMlN(1—9MAx) R.[R (a-a) J
These bounds apply in the perigee case whenever (R-u)=o0
Now consider the apogee case when (R*1) =0 From the inequality (42) we have
uo(1- emx) . (99)
QAmaAx (1 + EMAX = f(p'P)

Analogously with the case of range, inequality (74), we seek to assign a somewhat conservative

(high) upper bound on the value of f{p. 2} with respect to 2 . In practice, we do not want the
upper bound to be too conservative, because that would relax the condition on 2 too much and
lead us to have to check too many values of range rate. Of course, this is a less serious difficulty

than having a too-optimistic (low) upper bound on the value of (0.9} . The latter would make
the resulting condition on 2 too constraining and lead us to miss values of range rate that would
have produced candidate orbits within the given element-set partition.

Recall from (44) that the value of range at the minimum of 2. #} with respect to range is

p=— (R-a) / , . : . .
(u-u) , regardless of the sign of this quantity. Note also that f{0. £} is monotonic-
g g q y
increasing with respect to # as we move away from this minimum. Also, for every value of
range rate, the function f(. £} is symmetric with respect to the minimum along the # coordinate

direction. Therefore, we will seek to move to a value of 2 that is as far from the minimum as
possible, while still being consistent with the given element-set partition and the given
observation. Of course, we will require that the range be non-negative a priori. In fact, the

largest allowable value of 2 has already been derived. From equation (14), we have:

Pmax = —(R-u) + "R w2 + [aZ5(1+ eyax)? —R-R] (100)

25



The largest possible value of this function would occur when R is aligned with —@ | leaving

Pmax = |[RIl + amax(1 + emax) | In this case, the station position would be aligned with the
perigee of the orbit, while the satellite is at the highest allowable apogee. In practice, this
extreme value of maximum range cannot occur, because the size of the Earth prevents this
viewing geometry. The more general equation (100) accounts for the actual viewing geometry.

We require that this maximum range (100) be real-valued, just as we did for equation (14).
Hence, the condition (13) applies here also: @uax 1+ émax? = R-[R— (R-u)ul | In particular,
if this latter condition does not hold, then no possible value of the range will lead to orbits within
the specified element partition. We can discard the observation without forming any hypotheses
for it.

1
If the range for the minimum of (0. ) with respect to range were to take the value 2°7MAX |

halfway between # =0 and P = Pmax , then we would have (0.9} = f{pmax. ) | because of
1

the symmetry of the function. If the global minimum were to the left of 2”™4%X | then we would
1

have f{0.p) < flpmax.p} | and if the minimum were to the right of 2PMAX then we would have
£Q0.0) > flomax. £} . Moreover, if (R-1)>0 5o that the minimum of £(. #) occurs at a
negative value of the range, then the value # = Pmax is always farther from the minimum than is
the value # =0 _In that case we always have 0.9} = f{pmax.p} . On the other hand, if
(R-u)<o0 , so that the minimum occurs at a positive value of the range, then either # =0 or

P = Pmax could be farther from the minimum, depending on the exact value of (R-11) The
following logic includes all cases for assigning an upper bound with respect to range for the

function fle.p) :

_(R-u) < prax
If Jiai = /
_(R- u)/

, then the upper bound on 2.} is flomax.P) .

(a- u)> MAX/Z

, then the upper bound on f{p.p} is f(0.p)
Therefore, for the apogee case, inequality (99), we need to consider these two sub-cases. First

consider the sub-case

u {1-eyax (101)
' “‘ flpmax. P!

amax ' 1+ emax

il1—e 102
£ |<R R+2pR-u+ 2pyaxR -1+ p2 4 plagu-u (102)

amax ' 1+ emax/

p=+sz-u—[a“ (i;jm‘)-o]ao (103)
MAX -MAX
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Here the quantity 0 = R+ R+ 2pmaxR - + piay 010 = (R + pyaxtt) - (R + pyaxid) js always
non-negative. The roots of the quadratic are

po=trenys el (22 - .

and real roots will exist if and only if the argument of the square root is non-negative:

52 of o

If no real roots exist, then no value of the range rate can be found that results in orbital velocities
greater than the minimum allowable, for the given element-set partition and the given
observation. As we noted earlier, this means that the particular observation in question can be
excluded from further consideration in forming orbit hypotheses, even if hypotheses are being
formed without explicitly using range rate, as in the Lambert-based approach. If real roots exist,
then the inequality is satisfied to the left of the left-most root and to the right of the right-most
root, because the quadratic (103) is concave-up:

v e 3 [ H (1= emax) ] (106)
p = -(Row)- (R 47 (1+e ) D
s = (. ‘r-_z [ 4 (1—epax) ] (107)
b2 -(Rew)+ (Rewf+ | (1+e ) D

Now we consider the other sub-case for the apogee case. The inequality (99) becomes

U (1- e?rmx) . (108)
Amax (1 + EMAX = f(O.P)
Then, using (42) with # =0 _we get
U ."' 1—epax ' (109)

| =R-R+2pR- 52
amax ' 1+ emax/ el

Notice that setting # = 0 causes all terms containing angle rate to vanish. Although angle rate
does not constrain the range rate in this case, range rate must still satisfy this quadratic condition.

p’+2pR.u_[a“ (i;jm)_g.glzo (110)
MAX *MAX

The roots of the quadratic are
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Real roots of the quadratic (110) exist if and only if the argument of the square root is non-

negative:

K (1 — €MaAx
1+ EMAX

(112)

)znmn—m-@ﬂ

Qmax

If this necessary and sufficient condition for the existence of real roots of the quadratic
expression (110) is not satisfied, then there are no possible values of range rate that will produce
orbital speeds greater than the specified minimum orbital speed. In that case, we can discard the
given observation without forming any range or range rate hypotheses.

For space-based stations, the observing geometry can vary widely and we cannot easily judge in
advance how often the condition (112) for the existence of real roots might be satisfied.
However, for Earth-bound stations, we can be more explicit. Because the square bracket in (112)
is a projection of the station velocity, its magnitude is always less than or equal to the station
velocity magnitude. The projection vanishes only if the station velocity is aligned with the line-

of-sight unit vector @ . Hence, we can write
0=<R-[R-(R-ulul £R-R = (Rgwg)* (113)
Consequently, we will have real roots for the quadratic expression (121) if

'ZRE(DE :‘2 = n (

Qmax

1-mu) (114)

1 + EMAX

This condition is analogous to (66) and similar expressions given above for the perigee cases. Let
us examine the conditions under which we can expect it to be satisfied. Following the reasoning
in (66), we can write

1 CDU3; - (11
. . ‘cTu? ( 1 —emax |~ (1 ~ eMax (5)

2rrad | 806.81 sec; 201+ emax 1+ eyax
86,164 sec’’. 1CTU

u "1_9MAX"
a = - | | :
MAX T Rpwg)? 1+ emax !

¢

i1 cpuUl |

For values of the maximum allowable eccentricity near unity, the maximum allowable
semimajor axis that will guarantee the existence of real roots of (110) will be markedly restricted
compared to the perigee case. For example, at emax = 0.9 | we have @max = 15.2 CDU
approximately. However, with eccentricity this large, we would also require @mun = 10.0 CDU
in order to have a smallest allowable perigee greater than one Earth radius. We conclude that, at
least in a useful number of low-maximum-eccentricity cases, we can expect real roots for (110)
when we have observations from an Earth-bound station. Of course, we should always use the
exact condition (112) to determine the existence of real roots for (110) rather than the very
conservative approximate condition (114).
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Now, assuming that real roots for the quadratic (110) do exist, we consider whether the quadratic
has any positive real roots. Descartes’ rule of signs tells us that (110) will have one real positive
root, and, therefore, also one negative real root, if the third coefficient is negative, regardless of
the sign of the second coefficient. The third coefficient is negative provided that

u (1—em)2R.R (116)

amax \1 + emax

This condition must hold for observations for both Earth-bound and space-based stations, if we
are to have one positive real root of the quadratic (110). For Earth-bound stations, we can reason
as before that we are guaranteed a single positive real root if

0= R'RS ':RE(UE‘:‘Z <

H (1 ~ emx) (117)
amax \1 + eyax

This expression is essentially the same as (114) above. We conclude that, in many practical cases
for Earth-bound stations, we can expect one real positive root and, therefore, necessarily also one
negative root. Because the quadratic is concave-up, the inequality (110) will be satisfied to the
left of the negative root and to the right of the positive root:

_ : o o3[ B (I—emax\ o o] (118)
p-(Row)- [(Rw) +.am(1+em) R-R
A : :- 2 [ H 1_em g .. (119)
pz—(R-u)+<(R-u) +_amx(1+em) R-R

For space-based stations, the inequality (116) must be re-examined. The third coefficient of the
quadratic expression in (110) will be negative only in the case when the smallest allowable
apogee speed is greater than the station speed. For example, a station in circular orbit must be
well above the highest allowable apogee for this to occur. However, if (116) is not satisfied, so
that the third coefficient of (110) is positive, the number of positive real roots depends on the

sign of the second coefficient. If R-u >0 then (110) has no positive real roots, but two
negative ones. The quadratic is concave up, so the inequality must be satisfied to the left of the

more negative root and to the right of the less negative root. If R-u <0 then (110) has two
positive roots and the inequality is satisfied to the left of the smaller positive root and to the right
of the larger positive root. In effect, the inequalities (118) and (119) include all possible cases of
real roots for observations from both Earth-bound and space-based stations, in the apogee sub-
case (108).

Now consider the case (R-1)>0 o that f* is not physically possible, and consider the
perigee case. From (56), we have

flo.p)2R-R+2pR-u+2pR-u+p*+p*u-u=

u (1+9MAx) (120)

amn \1 — emax
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This inequality still holds true if we evaluate the range at its constrained speed-squared-
minimizing value # = 0 according to equation (50):

f(0,p) =

H (1 + 9MAx) (121)
ammv \1 — emax

Here we note that this case is equivalent to the special case of @ =0 | zero apparent total
angular rate, in the sense that the resulting inequalities for range rate are the same in both cases.
When all vectors are resolved in an inertial frame, zero apparent angular rate would, of course,
be an exceptional circumstance. Should it occur, however, the value of range is not restricted by
angular rate at that moment, and any of the above analysis that involves division by the total
apparent angular rate does not apply. However, the range rate is still restricted in the manner
about to be shown.

The inequality (121) becomes

p=+2pR-u—[ n (1+e""‘“)—k-R]so (122)
amv \1 — emax

The roots of this quadratic are

u (1+em)_R_R] (123)

. | . 2
>=—{(R-u)+ /(R-u +[
p=—(Rw)x [(R-u)+ (32

N

Real roots of the quadratic (122) exist if and only if the argument of the square root is non-
negative:
K (1 + emax

1 — emax

(124)

)2 R-[R—(R-uul

aMIN

For a given observation, if this necessary and sufficient condition for the existence of real roots
of the quadratic expression (122) is not satisfied, then there are no possible values of range rate
that will produce orbital speeds less than the specified maximum orbital speed. In that case, we
can discard the observation without forming any range or range rate hypotheses for it.

For space-based stations, the observing geometry can vary widely and we cannot easily judge in
advance how often the condition (124) for the existence of real roots might be satisfied.
However, for Earth-bound stations, we can be more explicit. Because the square bracket in (124)
is a projection of the station velocity, its magnitude is always less than or equal to the station

velocity magnitude. The projection vanishes only if the station velocity is aligned with 1 .
Hence, we can write

0=R-[R-(R-ulul £R-R = (Rgwg)* (125)

Consequently, we will have real roots for the quadratic expression (122) if
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u (1 + em) (126)
amin \1 — emax

This condition is the same as (66) above, so we can usually expect to have real roots in the case
of Earth-bound observations.

Now, assuming that real roots for the quadratic (122) do exist, we consider whether the quadratic
has any positive real roots. Descartes’ rule of signs tells us that (122) will have one real positive
root, and therefore also one negative real root, if the third coefficient is negative, regardless of
the sign of the second coefficient. The third coefficient is negative provided that

(127)

% (1+9~MAx
1 —emax

)ER-R

amIN

This condition must hold for observations for both Earth-bound and space-based stations, if we
are to have one positive real root of the quadratic (122). For Earth-bound stations, we can reason
as before that we are guaranteed a single positive real root if

0=R-R=(Rgwg? <

H (1 + 6?rvmx) (128)
amin \1 — eymax

This expression is essentially the same as (126) above. We conclude that, in most practical cases

for Earth-bound stations, we can expect one real positive root and, therefore, necessarily also one
negative root. Because the quadratic is concave-up, the inequality (122) will be satisfied between
the roots:

. r . L] (129)
pz—(R-u)- [(R-u)'+[L (1+em)—R-R
\ | AMIN — €mAx
N rara — (130)
p=—(R-u)+ |(R-u) +|-= (i+em)—R-R
\ | AMIN — €MAX

For space-based stations, the inequality (127) must be re-examined. The third coefficient of the
quadratic expression in (122) will be negative only in the case when the largest allowable perigee
speed is greater than the station speed. For example, a station in circular orbit must be well above
the lowest allowable perigee for this to occur. However, if (127) is not satisfied, so that the third
coefficient of (122) is positive, the number of positive real roots depends on the sign of the
second coefficient. If R-u>0 then (122) has no positive real roots, but two negative ones.

The quadratic is concave up, so the inequality must be satisfied between them. If R-u<o
then (122) has two positive roots and the inequality is satisfied between them. In effect, the
inequalities (129) and (130) include all possible cases of real roots in the perigee case whenever
(R-u)>0
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Now consider the apogee case. The expressions (41) and (42) together give us the requirement
that the minimum orbital speed-squared be no less than the lowest allowable orbital speed-
squared:

flo.p)2R-R+2pR-u+2pR-u 4+ p* +pa-a=

K (1—8MAX) (131)
amax \1 + emax

In the special cases W =0 or 2 =0 | the inequality (131) becomes a function of range rate
only:

- B (1—emax (132)
R-R+26R-u+p? > - (1+e )

.2 D _ H 1_3MAX ¥ (133)
p*+2pR-u [a (1+e ) R R]>_*0

This expression is the same as (110). The roots of the quadratic are

o=t foT )

Real roots of the quadratic (133) exist if and only if the argument of the square root is non-

negative:

H (1 — €max
1+ EMAX

(135)

)ZR-[R—(R-u)u]

Qmax

For a given observation, if this necessary and sufficient condition for the existence of real roots
of the quadratic expression (133) is not satisfied, then there are no possible values of range rate
that will produce orbital speeds less than the specified maximum orbital speed. In that case, we
can discard the observation without forming any range or range rate hypotheses.

For space-based stations, the observing geometry can vary widely and we cannot easily judge in
advance how often the condition (135) for the existence of real roots might be satisfied.
However, for Earth-bound stations, we can be more explicit. Because the square bracket in (135)
is a projection of the station velocity, its magnitude is always less than or equal to the station
velocity magnitude. The projection vanishes only if the station velocity is aligned with the line-

of-sight unit vector @ . Hence we can write
0=R-[R-(R-ujul =R-R = (Rgwg)® (136)
Consequently, we will have real roots for the quadratic expression (133) if

(Rgwg)? < 2 (
Qmax

1- em) (137)

1 + EMAX

This condition is the same as (114) above, so we can usually expect to have real roots in the case
of Earth-bound observations.
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Now, assuming that real roots for the quadratic (133) do exist, we consider whether the quadratic
has any positive real roots. Descartes’ rule of signs tells us that (133) will have one real positive
root, and, therefore, also one negative real root, if the third coefficient is negative, regardless of
the sign of the second coefficient. The third coefficient is negative provided that

u (1—em)2R_R (138)

amax \1 + emax

This condition must hold for observations for both Earth-bound and space-based stations, if we
are to have one positive real root of the quadratic (133). For Earth-bound stations, we can reason
as before that we are guaranteed a single positive real root if

0= R R = ’:RECL)E ‘:'2 <

H (1 - eMAX) (139)
amax \1 + epax

This expression is essentially the same as (137) and (114) above. We conclude that, in most
practical cases for Earth-bound stations, we can expect one real positive root and, therefore,
necessarily also one negative root. Because the quadratic is concave-up, the inequality (133) will
be satisfied to the left of the negative root and to the right of the positive root:

_ : . a2 [ u [1—e L (140)
pS—(R-u)—\‘(R-u) +-am(1+8x)—R-R

(141)

. - o o3[ B (1-emax) 5 o]
p= (R-u)+\‘(R-u.) +_am(1+em) R R'

These expressions are the same as (118) and (119). For space-based stations, the inequality (138)
must be re-examined. The third coefficient of the quadratic expression in (133) will be negative
only in case the smallest allowable apogee speed is greater than the station speed. For example, a
station in circular orbit must be well above the highest allowable apogee for this to occur.
However, if (138) is not satisfied, so that the third coefficient of (133) is positive, the number of
positive real roots depends on the sign of the second coefficient. If R-u >0 then (133) has no
positive real roots, but two negative ones. The quadratic is concave up, so the inequality must be
satisfied to the left of the most negative root and to the right of the less negative root. On the
other hand, if R-u <0 then (133) has two positive roots and the inequality is satisfied to the
left of the smaller positive root and to the right of the larger positive root. In effect, the
inequalities (140) and (141) include all possible cases of real roots in the apogee case.

Hence, in the special cases of (R-1)>0 orzero apparent total angular rate, no constraint on
the possible values of range, depending on angle rate, exists other than the requirement that
range be non-negative a priori. However, the superposition of the inequalities (129), (130), (140)
and (141) defines the allowable intervals for range rate. In general, there will be two disjoint

intervals of range rate in this case, located symmetrically with respect to the value ~ (R-u) , one
interval consisting entirely of negative values and one consisting entirely of positive values.
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SUMMARY AND CONCLUSION

Our results show that the possible values of both range and range rate can be limited a priori for
each line-of-sight observation to finite intervals corresponding to a specified partition of the
element space. The endpoints of the intervals are given explicitly in terms of the angle-based
observations, station position and station velocity, and can be computed independently for each
observation. Additional conditions based on the orientation of the orbital plane and special
solutions of Lambert’s problem, which must be satisfied by range values for pairs of
observations, can be used to further reduce the number of Lambert solutions needed for the
initial orbit determinations. All the formulas derived here apply uniformly to Earth-bound and
space-based observing stations, although we analyze briefly the case of Earth-bound observing
stations to show the potential range of application of the formulae. We also present explicit
conditions identifying when a given observation does not correspond to any possible orbit within
the specified element-space partition. Such observations can be discarded before any data
association hypotheses or Lambert solutions are produced.

The range and range rate bounds derived in this paper allow a convenient parallelization of the
task of computing initial orbits in large space surveillance tracking scenarios, which is the phase
of the tracking job that involves most of the computational complexity. Because the bounds are
conservative to some extent and not exact, it is possible that some values of range and range rate
that lie within the bounds given here will lead to candidate orbits that lie outside the specified
partition of the element space. This fact leads to some inefficiency in the parallelization of the
initial orbit hypotheses over the whole element space. Essentially, candidate orbits near the
boundaries of the specified partitions may be generated more than once and would, therefore,
have to be identified and merged later in the tracking process. The actual cost of this inefficiency
in particular problems will depend on the observation sets and element partitions of interest, and
may need to be studied if the scenario is computationally stressing. On the other hand, all the
orbits within an element-space partition correspond to values of range and range rate that do lie
within the bounds given here, so that no candidate orbits will be missed merely through this
choice of bounds.
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