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ABSTRACT 
 

We propose a type of admissible-region analysis for track initiation in multi-
satellite problems when angles are the primary observable. For a specified 
rectangular partition in the space of orbital elements, we present explicit upper 
and lower bounds for the values of range and range rate that will lead to initial 
orbit hypotheses (data association hypotheses) associated with that partition. 
These bounds allow us to parallelize the generation of candidate orbits, because 
each element-space partition can be handled independently of the others. 
Measured or derived angle rates provide additional bounds on range and range 
rate, also permitting the same parallelism. 

 
 
INTRODUCTION 
 
The advent of high-sensitivity, high-capacity optical sensors for space surveillance presents us 
with interesting and challenging tracking problems. Accounting for the origin of every detection 
made by such systems is generally agreed to belong to the “most difficult” category of tracking 
problems. Especially in the early phases of the tracking scenario, when a catalog of space objects 
is being compiled, or when many new objects appear in space because of on-orbit explosion or 
collision, one faces a combinatorially large number of tracking hypotheses to evaluate. The 
number of hypotheses is reduced to a more feasible number, if observations close together in 
time can, with high confidence, be associated by the sensor into extended tracks on single 
objects. Most current space surveillance techniques are predicated on the sensor systems’ ability 
to form such tracks reliably. However, the required operational tempo of space surveillance, the 
very large number of objects in Earth orbit, and the difficulties of detecting dim, fast-moving 
objects at long ranges mean that individual sensor track reports are often inadequate for 
computing initial orbit hypotheses. In fact, this situation can occur with optical sensors even 
when the probability of detection is high. For example, the arc of orbit that has been observed 
may be too short, or may have been sampled too sparsely to allow well-conditioned, usable orbit 
estimates from single tracks. In that case, one has no choice but to solve a data association 
problem involving an unknown number of objects and many widely spaced observations of 
uncertain origin. In the present paper, we are motivated by this more difficult aspect of the 
satellite cataloging problem. However, the results of this analysis may find use in a variety of 
less stressing tracking applications. 
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Assume that we have a pair of line-of-sight unit vectors   and   , measured at time  at 
station position  and time  at station position , respectively. Assume, without loss of 
generality, that   . We want to test the hypothesis that these two observations are 
associated with the same space object. To this end, we attach a set of hypothetical range values, 

 and  respectively, to each of these measured unit vectors, 
and then generate candidate orbits by solving Lambert’s problem for each of the pair-wise 
combinations of hypothetical orbital position vectors  and . With a large dataset of 
measured line-of-sight unit vectors, we can, in principle, consider all possible pairs of 
observations and solve the family of Lambert problems for each pair. Then each hypothetical 
orbit from the solution of Lambert’s problem is a data association hypothesis that must be either 
confirmed or eliminated through comparisons with other observational data. This approach 
allows us to make use of an already proven method (the Search and Determine algorithm and 
software, SAD) that was designed for generating and testing data association hypotheses for 
position-type observations typical of radar sensors [9,10,11]. Given enough range hypotheses for 
each observed line of sight, we are guaranteed to generate a viable candidate orbit for every 
object that has been observed at two or more distinct times. However, the Cartesian product of 
the set of range values for each observed line of sight with the sets of range values from every 
other line of sight implies a possibly prohibitive number of Lambert solutions to generate and 
check. The computational complexity for generating hypothetical orbits on this approach is 
quadratic in the number of observed lines of sight and also quadratic in the number of range 
hypotheses that we attach to the observations. 
 
How should we limit the number of range hypotheses to make the total number of candidate 
orbits manageable, while also generating candidates that are likely to correspond to real orbits of 
interest? For example, we may be most interested in generating candidate orbits near the 
geosynchronous equatorial orbital (GEO) belt. Let us seek to generate hypotheses for orbits that 
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lie only in a bounded region of semimajor axis   , eccentricity   , inclination   and right 
ascension of the ascending node  , namely, within a partition specified by the intervals  

 ,  ,   and   . (For the purposes of this 
discussion, we leave the other orbital elements unconstrained. It will turn out that these four 
elements constrain the possible values of range in simple ways without our having any recourse 
to angle rate information.) Then, to the extent that we can restrict the generation of hypothetical 
orbits to a specified partition of the space of orbital elements, we have parallelized the task of 
building a catalog of objects detected within that partition. The reason is that any partition of the 
space of orbital elements, including the whole space itself, can be sub-divided into smaller 
partitions, and each sub-partition can be handled independently. In the approach outlined here, 
all the observations would have to be considered for each sub-partition of the space of orbit 
elements. However, by constructing upper and lower bounds on range for each sub-partition of 
the element space, we limit the number of range hypotheses that have to be considered for each 
sub-partition. This approach allows us to consider a manageable number of range hypotheses for 
each sub-partition before we generate candidate orbits, simply by making the sub-partitions 
small enough, so that the overall computation is feasible. 
 
Our emphasis on generating candidate orbits with a Lambert-based approach is not merely a 
matter of convenience in extending an existing method such as SAD. Certainly, the bounds on 
range and range rate that we present here could be used in a variety of ways with other angles-
based initial orbit determination methods. All the traditional methods of angles-only orbit 
determination, plus the modern methods of Gooding, Mortari and Karimi, and others [6,7,8,19], 
rely on solving for the range by either a root-finding method or an optimization method. Such 
algorithms can always be made to work more reliably when rigorous upper and lower bounds on 
the unknown quantity are available. However, one encounters at least three difficulties in trying 
to apply direct angles-only methods to a large, multiple-target catalog-building scenario. 
 
First, although the range bounds presented here allow one to reject candidate solutions based on 
range, with a direct angles-only method one still has to compute the range in terms of the 
observations in order to find out if it satisfies the bounds. This turns out to be most of the 
computation needed to produce the candidate orbits themselves. In the Lambert-based approach, 
the range bounds allow us to avoid most of the potential computation for the candidate orbits. 
 
Second, the direct angles-only methods do not scale to large problems as well as a Lambert-
based method does. Given  observations of line of sight, not necessarily close together in time, 
the computational load of Lambert-based methods is proportional to , because two 
observations per data association hypothesis are needed. The “constant” of proportionality is 
itself quadratic in the number of range hypotheses that must be considered for each line of sight. 
However, as noted above, the latter number can be driven down to manageable size in each 
partition of the element space by making the partitions small. With traditional methods of angles-
only initial orbit determination, including that of Gooding [6,7], one faces a computational load 
that is proportional to , because 3 observations must be associated together to compute the 
range and hence the candidate orbit. The methods developed by Mortari and Karimi are more 
robust than traditional methods, but these also require at least 3 observations per association 
hypothesis. In fact, the approach of Mortari and Karimi [19] works better with more observations 
per association hypothesis, but then one faces a computational load that scales like , , or 
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even higher. In general, the computational complexity is polynomial in the number of 
observations, with the polynomial degree equal to the number of observations per data 
association hypothesis. Of course, it is not clear in general which approach finally requires fewer 
processors to achieve a desired production rate of orbit solutions. Higher-degree scaling requires 
more processors on the traditional range-solution approach and smaller element partitions require 
more processors on the range-hypothesis approach. The choice may depend on the size and 
character of the dataset itself. 
 
Third, a Lambert-based method, ideally implemented, will produce a candidate orbit for every 
real object that has been observed at least twice. In comparison, a direct angles-based method, 
such as Gooding’s, will produce candidate orbits only for those real objects that have been 
observed at least 3 times. An  method will produce candidate orbits only for those real objects 
that have been observed at least 4 times, and so on. Hence, the Lambert-based method may do a 
more complete job of generating viable candidate orbits from real datasets, while scaling more 
favorably than the direct angles-based methods for large numbers of observations. 
 
We are seeking explicit bounds on range and possibly range rate that can be applied for each 
individual angle-based observation, or at most to pairs of angle-based observations. Even with 
the further restriction that hypothetical orbits be elliptical and Keplerian (which we accept) and 
even allowing the possibility that the observation may include angle rate values (which we will 
examine at length), it may not be obvious that efficient bounds having these properties can be 
obtained. Exact bounds would have to be based on some admissible-region analysis of the type 
developed by Milani, Tommei, Scheeres, Maruskin, Fujimoto and others [12-18]. For example, 
denoting the gravitational parameter by   , we write the first integrals of Keplerian motion as 
 
 

  
(i) 

  (ii) 
 

 
(iii) 

 
These can be evaluated with the vector triangle relation  and its time derivative 

   for each observation. Then, for each observation, we can define admissible 
regions in the   plane for each partition in the space of elements by means of inequalities 
such as  
 

 
(iv) 

 
 

(v) 
  (vi) 
 
Here  is the north polar unit vector in the Earth-centered inertial frame. For each observation, 
the values of range and range rate that satisfy these inequalities will result in orbits that lie only 
within the given partition of the space of elements. DeMars and Jah [2] have shown what the 
admissible regions look like for partitions of semimajor axis and eccentricity by a numerical 
treatment of the above inequalities. Maruskin, et al. [3], have shown how the admissible regions 
evolve in time and how the overlap of the admissible regions for different observations can help 
solve the data association problem. However, even though expressions (i) through (vi) can be 
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reduced to polynomial forms in range and range rate, each relation is coupled in both variables 
and the polynomial degree is high, preventing us from obtaining explicit expressions for range 
and range rate in terms of the given data. Moreover, the usual admissible-region analysis leads 
nowhere if angle rates are not available. For example, the track-initiation method of DeMars, et 
al.[1], involving multiple hypotheses on range and range rate, requires both angle and angle rate 
values. 
 
In the present analysis, we take a geometric and kinematic approach that does lead to explicit 
upper and lower bounds on the possible values of range for each observation or pair of 
observations, given only angle data at discrete times. In fact, we find several inequalities that 
must be satisfied simultaneously, and we can take the most restrictive superposition of the 
different bounds as our working result. In case angle rates are available, we can obtain explicit 
upper and lower bounds on range rate, as well as additional bounds on range. It may happen that, 
for a given observation, there are no values of the range or range rate that lead to orbits within 
the given element-space partition, so that the observation can be eliminated from further 
consideration. We obtain explicit conditions for the existence of possible values of range and 
range rate, in terms of the observation itself. 
 
The price for obtaining explicit bounds on range and range rate is that the bounds are not exact 
but somewhat conservative. Although every orbit within the element-space partition corresponds 
to values of range and range rate that lie within the bounds given here, some values of range or 
range rate that satisfy the bounds may lead to orbits that lie outside the given partition. This 
situation represents inefficiency in the parallelization of building the catalog: nearly the same 
candidate orbits near the boundaries of the element-space partitions may be generated in both of 
the adjacent partitions, if the range or range rate hypotheses are planted densely enough. On the 
other hand, no candidate orbits within the given element-space partitions will be missed because 
of the bounds given here. The extent and cost of the inefficient duplication of candidate orbits 
will depend on the particular datasets and element partitions of interest, and may require further 
study. In practice, of course, within any element partition, any of these extra orbit hypotheses can 
be either kept or discarded. If they are kept, one would have, at most, a bookkeeping problem of 
transferring the extra orbits to the correct element partition. The trade-off in this case is that 
merely moving data between processors always takes time. 
 
 
BOUNDS ON RANGE IMPLIED BY ANGLE VALUES 
 
Here we present bounds on range that must hold for each observed line of sight. Assuming that 
all orbits of interest are elliptical, require that the orbital radii lie between the maximum specified 
apogee and the minimum specified perigee: 
 
  (1) 
 
The values of range that correspond to these limits on orbital radius can be found explicitly using 
the vector triangle relationship   . Squaring terms to remove the radical, we have 
 
  (2) 
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Consider the perigee and apogee cases separately. For the perigee case, we require the orbital 
radius to be no smaller than the smallest allowable perigee radius: 
 
  (3) 
 
  (4) 
 
The roots of this quadratic are: 
 
 

 
(5) 

 
We will have real roots if and only if the argument of the square root is non-negative: 
 
  (6) 
 
If no real roots of the quadratic expression (4) exist, then we can immediately discard the current 
observation and form no hypotheses with it. The reason is that no value of the range will be 
found for this observation, which is consistent with the specified intervals of the orbital elements. 
 
Descartes’ rule of signs tells us the number of positive real roots. If the third coefficient in the 
quadratic form (4) is negative, that is, if   , then, regardless of the sign 
of the second coefficient  , we will have one positive real root and necessarily also one 
negative root. Because the quadratic is concave-up, the inequality is satisfied to the left of the 
negative root and to the right of the positive root.  We can ignore the negative root and all values 
to the left of it, because we require a priori that range values to be non-negative. What remains is 
a positive lower limit on the possible values of range: 
 
 

 
(7) 

 
It is worth noting that, for Earth-bound stations, the third coefficient of (4) will essentially 
always be negative, because the inequality    is approximately the 
condition that the minimum allowable perigee radius be larger than the Earth radius. Moreover, 
the second coefficient  will essentially always be positive, because observations have to 
be taken above the local horizontal plane at some positive local elevation angle. For space-based 
observing stations, it is possible that neither of these circumstances would be true: the station’s 
orbital position may be higher than the minimum specified perigee radius, or observations may 
be taken at negative local elevation angles, or both. 
 
If the third coefficient in (4) is positive, that is, if   , then the quadratic 
will have either no positive real roots or two positive real roots, depending on the sign of the 
second coefficient. This is the possibility just mentioned for space-based stations, although we 
do not expect this possibility for Earth-bound stations unless we are interested in orbits with 
perigee radii less than the Earth radius. If, furthermore, the second coefficient in (4) is positive, 
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that is, if   , then we have no positive real roots, but only a pair of negative roots. 
Because the quadratic is concave-up, the inequality (4) is satisfied to the left of the more 
negative root and to the right of the less negative root. However, since we require a priori that 
range values be non-negative, we are left merely with the condition that   . If the second 
coefficient is negative, that is,  , meaning that the observation is taken at negative 
local elevation angle, then the quadratic will have two positive real roots. Because the quadratic 
is concave-up, the inequality (4) will be satisfied to the left of the smaller root, that is, between 

 and the smaller root, and also to the right of the larger root. In this case, we have two 
disjoint intervals of range, one finite and one semi-infinite, over which range hypotheses will 
satisfy the perigee constraint: 
 
 

 
 (8) 

 
 

 
    (9) 

 
Now we consider the apogee case and seek to derive results that are analogous to those above. 
The apogee case will provide us with conditions on values of the range that are complementary 
to those of the perigee case. Since both sets of conditions must be satisfied simultaneously, we 
can take the most restrictive superposition of all conditions on range to define the set of values 
over which we must form range hypotheses. 
 
For the apogee case, we have from the inequality (2) that the orbital radius must be no larger 
than the maximum allowable apogee radius: 
 
  (10) 
 
  (11) 
The roots are: 
 
 

 
(12) 

 
We will have real roots if and only if the argument of the square root is non-negative: 
 
  (13) 
 
If no real roots exist, then we can immediately discard the observation and form no hypotheses 
with it. The reason is that no value of the range will be found for this observation, which is also 
consistent with the specified intervals of the orbital elements. 
 
Assuming that we have real roots in equation (12), we use Descartes’ rule of signs to determine 
the number of positive real roots. If the third coefficient in the quadratic form (11) is negative, 
that is, if  , then, regardless of the sign of the second coefficient 

 , we will have one positive real root and necessarily also one negative root. Because the 
quadratic is concave-up, the inequality (11) is satisfied between the roots. Moreover, we require 
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a priori that range values be non-negative, so we can say without loss of generality that the 
inequality will be satisfied between  and the positive real root. The result is that we have 
an upper bound on the possible values of range: 
 
 

 
(14) 

 
It is worth noting that, for Earth-bound stations, the third coefficient will essentially always be 
negative, because the inequality    is approximately the condition that 
the maximum allowable apogee radius be larger than the Earth radius. Moreover, the second 
coefficient  will essentially always be positive, because observations have to be taken 
above the local horizontal plane at some positive local elevation angle. For space-based 
observing stations, it is possible that neither of these circumstances would be true: the station’s 
orbital position may be above the maximum specified apogee radius, or observations may be 
taken at negative local elevation angles, or both. 
 
If the third coefficient in (11) is positive, that is, if   , then the quadratic 
will have either no positive real roots or two positive real roots, depending on the sign of the 
second coefficient. This is the possibility just mentioned for space-based stations, although we 
do not expect this case for Earth-bound stations. If, furthermore, the second coefficient in (11) is 
positive, that is, if   , then we have no positive real roots, but only a pair of negative 
roots. Because the quadratic is concave-up, the inequality (11) is satisfied between these roots. 
However, since we require a priori that range values be non-negative, we can discard this 
particular observation and form no range hypotheses for it. 
 
If the third coefficient in (11) is positive, but the second coefficient is negative,  , 
meaning that the observation is taken at negative local elevation angle, then the quadratic will 
have two positive real roots. The quadratic is concave-up, so the inequality (11) will be satisfied 
between these two roots. In this case, we have a single finite interval of range over which range 
hypotheses will satisfy the apogee condition: 
 
 
 
 

 
(15) 

 
 

(16) 

 
The set of range values over which we may have to form hypotheses for the observation in 
question is given by the intersection of all of the above conditions, both perigee conditions and 
apogee conditions. 
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BOUNDS ON RANGE IMPLIED BY ANGLE VALUES, INCLINATION LIMITS AND 
NODAL LIMITS 
 
The above conditions are bounds on the possible values of range, which can be computed for 
each single observation. The fact that only single observations are involved is what allows us to 
find explicit bounds for each of the ranges before we form any range hypotheses. However, at 
least five additional restrictions on the allowable values of range can be deduced from relations 
that involve both of the ranges presented for a solution to Lambert’s problem. Although the 
nonlinearities in these relations prevent us from getting explicit inequalities like (7) – (9) and (14 
– (16), nevertheless we can formulate additional conditions that  and  must satisfy. 
Checking these extra conditions for each range pair may keep us from having to produce some 
unnecessary and relatively expensive Lambert solutions. 
 
Using the vector triangle relation   for each of the two lines of sight, compute the unit 
vector  normal to the candidate orbital plane: 
 
 

 
(17) 

 
Here the ambiguous sign has to be resolved a priori. The choice depends on whether the angle 
between the position vectors ( ) exceeds  or not, distinguishing between “long-way” 
and “short-way” orbits. With the sign chosen, the inclination is given unambiguously by 
 
  (18) 
 
The inclination of the candidate orbit lies in the specified interval  provided that 

 lies in the interval   . Hence we require that  
 
  (19) 

 
In the case of low-inclination intervals, it may be better to work in terms of sine inclination: 
 
 

 
  (20) 

 
In a similar way, we use the unit nodal vector to obtain conditions that the range pair must satisfy 
if the candidate orbit is to lie within a specified interval of right ascension of the ascending node,  

 . In the Earth-centered inertial frame, we have 
 
 

 
(21) 

 
so that, following standard logic for quadrant resolution, we require 
 
 

 
(22) 
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Of course, for important special cases like near-GEO orbits, it may be preferable to define 
element-space partitions in terms of nonsingular elements such as  and  

 . No special difficulty attaches to working in terms of these or any other 
elements related to the orbit plane. 
 
If any range-pair hypothesis  does not satisfy all of the above conditions, then that pair of 
values can be eliminated from further consideration without solving Lambert’s problem. The 
reason is that the geometry of the pair either will not allow an orbital inclination within its 
specified interval or will not allow a right ascension of the ascending node within its specified 
interval. Note that it is the pair of range values that is eliminated; either range value by itself may 
still lead to an acceptable hypothesis in combination with some other range value. 
 
 
BOUNDS ON RANGE IMPLIED BY ANGLE VALUES AND LAMBERT’S THEOREM 
 
Next, we can use three special solutions of Lambert's problem to restrict the ranges. The 
eccentricity of the orbit of least possible eccentricity that goes through a given pair of position 
vectors can be computed solely in terms of those position vectors. Call it   . Likewise, the 
semimajor axis of the orbit of least possible semimajor axis that goes through the pair of 
positions can be computed solely in terms of the position vectors. Call it   . Hence, for each 
hypothesized range pair   , we compute the corresponding position vectors and apply the 
following logic: 
 

If   , then reject the hypothesis pair without solving Lambert's problem, 
because the geometry is guaranteed to produce a larger semimajor axis than we 
have specified. 
 
If   , then reject the hypothesis pair without solving Lambert's problem, 
because the geometry is guaranteed to produce a larger eccentricity than we have 
specified. 

 
Of course, even for a  hypothesis that passes all of the above tests, the actual solution of 
Lambert's problem may still turn out to get rejected once we have computed the elements of the 
candidate orbit. The reason is that none of the conditions on range derived so far involves the 
minimum allowable eccentricity,  . This fundamental feature of our problem raises the 
question of how well we can limit the generation of candidate orbits to lie within the given 
eccentricity interval. Let us assume that the hypothetical range pair is not rejected by the above 
criterion, so that   . Assume also that all of the range bounds and other conditions that 
depend on single observations have already been applied. Then we know that the Lambert 
solution for a pair of range hypotheses will not produce an orbit having an eccentricity outside 
the interval  . If   , we have no difficulty: the candidate orbit will have an 
eccentricity within the given interval   . However, if  , then the eccentricity 
of the candidate orbit may or may not lie within the specified interval. The Lambert solution has 
to be generated and then, either kept if the eccentricity is at least as large as   or discarded if 
the candidate eccentricity turns out to be less than  . This represents some inefficiency in the 
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generation of candidate orbits, especially if those same candidate orbits were to be generated in 
the processing for other element-space partitions. (Naturally, one could simply move the 
discarded orbit to its correct element partition, though even that operation involves 
computational overhead.) The extent of the overall inefficiency depends on the dataset and the 
actual element-space partitions being used, so we cannot draw general conclusions. It would be 
helpful at this point to have reasonably sharp bounds on the actual eccentricity in the Lambert 
problem without having to solve the whole problem. However, lacking that, we have no better 
recourse than to generate the candidate orbit. Overall, we do expect to be able to reduce the 
number of Lambert solutions that have to be generated, compared to the number required 
without the above checks involving  and . 
 
The formulas for  and  are well known, but the derivations are short and illuminating. An 
ellipse has the property that the sum of the radii from the two foci is constant. In particular, 
 
  (23) 

 
where a superscript “*” denotes distance from the vacant focus. Therefore 
 
  (24) 
 
Hold the position vectors  and  fixed and vary the semimajor axis by moving the vacant 
focus throughout the plane of the orbit. The sum  reaches a global minimum when the 
vacant focus lies on the chord between   and   . In fact, the radii from the vacant focus obey 
the triangle inequality 
 
  (25) 
 
We conclude that the minimum possible semimajor axis is given by 
 
  (26) 
 
The eccentricity vector of minimum possible length can be obtained by considering the equation 
of the orbit: 
 

 

(27) 

 
Here  is the eccentricity vector,   is the angular momentum magnitude and  is the 
gravitational constant. Then 
 
  (28) 
 
  (29) 
 
  (30) 
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This shows that, for given position vectors in the Lambert problem, the locus of possible 
eccentricity vectors is a straight line normal to the chord vector in the orbital plane. The 
eccentricity vector varies with time of flight  in such a way that its projection on the chord 
vector  is a constant, namely, the signed difference   . Therefore, the 
eccentricity   has no maximum value in the Lambert problem, but it does have a 
minimum value when  is aligned with the chord vector. That minimal-length eccentricity 
vector can be written down directly in terms of the chord vector: 
 
 

 
(31) 

 
Using (30) to rewrite the scalar product, we have 
 
 

 
(32) 

 
from which we get 
 
 

 
(33) 

  
Finally, we quote without proof a statement of Euler’s Theorem, a special case of Lambert’s 
Theorem, which expresses the time of flight  between given position vectors on a parabolic 
(zero-energy) orbit: 
  

 

 
(33a) 

Here the quantity  is a signum function:  for “short-way” trajectories and  for 
“long-way” trajectories. The parameter  is defined in terms of the position vectors: 
 
 

 
(33b) 

 
Because, for given position vectors, the time of flight in Lambert’s problem is a monotonic 
decreasing function of the orbital energy, elliptic (negative-energy) orbits will always have a 
time of flight longer than the parabolic time, and hyperbolic (positive-energy) orbits will always 
have a time of flight shorter than the parabolic time. In our case, we can require that our 
observation pairs and range hypotheses always produce elliptic orbits: 
 
  (33c) 
 
Combinations that do not satisfy this condition can be eliminated without generating a Lambert 
solution.  
 
Given an observation pair  and   , the previous formulas, and the associated logic, can be 
used to decide if a hypothetical pair of ranges should be used to generate a Lambert solution. Of 
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course, whatever Lambert solutions are generated should be verified for compliance with the 
specified interval of eccentricity, because none of the conditions on range derived so far depends 
on the value of the minimum allowable eccentricity   . 
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BOUNDS ON RANGE IMPLIED BY ANGLE AND ANGLE RATE VALUES 
 
In case the observations include, or allow us to derive, angle rates, we can deduce additional 
bounds on the possible values of range. Like the bounds derived above from perigee and apogee 
distances, these extra bounds will apply to single observations, where we now understand an 
observation to consist of the values  at a known time. Differentiating the vector 
triangle relation   , we get the orbital velocity at the observation time: 
 
  (34) 
 
The time derivative of the line-of-sight unit vector contains the angle rates in the following way. 
In terms of topocentric right ascension  and declination , the observed unit vector is 
 
 

 

(35) 

 
Differentiating with respect to time, we get 
 
 

 

(36) 

 
It is straightforward to verify the identities  and   . We note also that the 
expression   , which occurs frequently in the following development, has a convenient and 
intuitive interpretation: 
 
  (37) 
 
  (38) 
 
Hence  is just the square of the total apparent angular rate. A similar expression would 
hold if the observation had been made in terms of azimuth and elevation angles and the rates of 
these. For short target detection streaks on the camera focal plane, the quantity 

 is just the square of the length of the streak on the plane of the sky and the 
corresponding time difference   would be the time elapsed between the endpoints of the 
streak. 
 
Now the magnitude of the velocity of the space object is obtained from 
 
  (39) 
 
Here we have used the identities  and   , the latter of which has the effect of 
removing terms that contain both range and range rate. The bounds we seek are based on the fact 
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that  has a maximum value at perigee and a minimum value at apogee. In particular, the 
energy equation evaluated at perigee and apogee gives us 
 

 
(40) 

 
The largest value of  occurs at the lowest allowable perigee and the smallest value of 

 occurs at the highest allowable apogee: 
 
 

 
(41) 

 
With the observational data given, the speed of the space object is a function of only two 
variables: 
  (42) 
 
It is worth noting that if we happen to have zero apparent angular rate at the moment of an 
observation, that is, if   , then  is independent of range at that moment. This 
situation means that apparent angular rate does not restrict the range at that moment, although 
some restriction on range rate must still exist. We address this special situation later. 
 
The quadratic function  is concave-up with respect to both  and  . Consequently the 
speed does not have a maximum with respect to  and  , but it does have a single, smooth, 
interior minimum defined by 
 
 

 
(43) 

 
It is straightforward to find out that this global minimum of  occurs at the values 
 
 

 
(44) 

 
The global minimum of  is then 
 
 

 

(45
) 

 
 

 
(46) 

 
 

 
(47) 

 
Resolve the station velocity in the following orthonormal basis: 
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(48) 

 
We see that the square bracket in equation (47) is just the third component of the station velocity 
in this orthonormal basis, so that 
 
 

 
(49) 

 
 
In any case,  is the square of the smallest possible orbital speed that is consistent with given 
values of   ,   and  . 
 
The value   may not be physically realizable if the minimizing range value in (44) happens to 
be negative, although it is always a global lower bound on the possible values of orbital speed-
squared. In case   , the minimizing value of range is positive so the value  is 
physically realizable. On the other hand, if   then the minimizing value of range is 
negative. In the latter case, we can find an associated constrained minimum that is physically 
realizable. Because the value of  is monotonic in  as we move away from the global 
minimum value  in any direction, we consider the value of the speed-squared at the first non-
negative value of range that we come to, namely, : 
 
  (50) 
 
Necessarily we have   , because we require a priori that range be non-negative. 
However, if   , then   , rather than   , is the square of the smallest possible 
orbital speed that is consistent with given values of   ,  and   . Evaluating the speed-squared 
(42) as in the definition (50), we get 
 
  (51) 
 
  (52) 
 
  (53) 
  
The square bracket is the projection of the station velocity on the plane normal to the line of 
sight. In terms of the orthonormal basis in equation (48) above, we could also write 
 

 
(54) 

 
 

 
(55) 
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The distinction between the global minimum  and the physically constrained minimum  
will become important later when we consider bounds on range rate. Until then we are seeking 
bounds only on the range. 
 
Consider the perigee case, and require the orbital speed-squared to be at most equal to the 
specified maximum orbital speed-squared. Using equation (42), we can write 
 
 

 
(56) 
 

 
We note that this inequality still holds if we evaluate  at its minimum with respect to , a 
minimum which is always physically realizable as long as the range is non-negative a priori: 
 
 

 
(57) 

 
This derived inequality is independent of range rate and is a condition that has to be satisfied by 
the range when we have both angle and angle-rate values available. The substitution for  lowers 
the value of  compared to the value we would have had with the true (non-minimizing) 
value of   , in effect relaxing the condition on range. However, with only angle and angle-rate 
values available, we apparently cannot do any better with the expression (56) if we want an 
explicit bound on range a priori. 
 
Rewriting (56) with the substitution (44) for   , we get 
 
 

 
(58) 

 
 

 
(59) 

 
According to equation (53) above, we could re-write this as 
 
 

 
(60) 

 
 
The roots of this quadratic are 
 
 

 

(61) 

 
We will have real roots if and only if the argument of the square root is non-negative: 
 
 

 
(62) 
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(63) 

 
According to equations (47) and (49) above, the left side of this inequality is the global minimum 
of the square of the orbital speed: 
 
 

 
(64) 

 
For given values of  ,  and , if this necessary and sufficient condition for the existence of 
real roots of the quadratic expression (59) is not satisfied, then there are no possible values of 
range that will produce orbital speeds less than the specified maximum orbital speed. In that 
case, we can discard the observation without forming any range hypotheses. 
 
For space-based stations, the observing geometry can vary widely and we cannot easily judge in 
advance how often the condition (64) for the existence of real roots might be satisfied. However, 
for Earth-bound stations, we can be more explicit. Because the square bracket in (64) is a 
projection of the station velocity, its magnitude is always less than or equal to the station velocity 
magnitude. The projection vanishes if and only if the station velocity is in the   plane. 
Hence, we can write 
 

 
(65) 

 
In this expression  is the equatorial radius of the Earth and  is the angular velocity of the 
Earth in the inertial frame. The product  is the station velocity magnitude on the equator, 
which is the largest velocity magnitude for any position fixed on the surface of the Earth. 
Consequently, we will have real roots for the quadratic expression (59) if 
 
 

 
(66) 

 
This condition will usually be satisfied in practice because of the relative smallness of  and 
the relative largeness of   . For example, we will have real roots provided that 
 
 

 

(6
7) 

 
Now, assuming that real roots for the quadratic (60) do exist, we consider whether the quadratic 
has any positive real roots. Descartes’ rule of signs tells us that (60) will have one real positive 
root, and, therefore, also one negative real root, if the third coefficient is negative, regardless of 
the sign of the second coefficient. The third coefficient is negative provided that 
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(68) 

 
This condition must hold for observations from both Earth-bound and space-based stations. The 
square bracket is the projection of the station velocity on the plane normal to the line of sight, so 
its magnitude must be less than or equal to the station velocity magnitude. Hence, for Earth-
bound stations, we can reason as before that we are guaranteed a single positive real root 
provided that 
 
 

 
(69) 

 
This expression is essentially the same as (66) above. We conclude that, in most practical cases, 
we can expect one real positive root and, therefore, also one negative root. Because the quadratic 
is concave-up, the inequality (60) will be satisfied between the roots. Excluding negative values 
of the range a priori, we can say in practice that the inequality is satisfied between  and the 
one positive root: 
 
 

 

(70) 
 

 
If the third coefficient in (60) is positive, then we will have either zero or two positive real roots, 
depending on whether the second coefficient is positive or negative. If, in this case, the second 
coefficient is negative, , then we will have two positive real roots. The quadratic is 
concave-up, so the inequality is satisfied between the two positive roots: 
 
 

 

(71) 

 
 

 

(72) 
 

 
If both the second and third coefficients in (60) are positive, we have no positive real roots, only 
two negative roots, and the inequality is satisfied between them. In this case, we can discard the 
observation and form no range hypotheses for it because we exclude negative values of the range 
a priori. 
 
Hence, whenever we have one or two positive real roots, we will have an upper bound on the 
possible values of the range : 
 
 

 

(73) 
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This upper bound, based on maximum orbital speed at perigee, is compatible with the observed 
angular rate values and also compatible with the specified limits on semimajor axis and 
eccentricity.  There might also be a positive lower bound as in the inequality (71) described 
above. 
 
Now consider the apogee case. We require that the orbital speed be no smaller than the smallest 
allowable orbital speed: 
 

 
(74) 

 
The problem here is to assign an upper bound with respect to  to the function  , when no 
interior maximum with respect to range rate exists. If we can assign such a bound, we are left 
with a quadratic expression involving only range. Necessarily, any a priori assignment, 
depending only on the observation, must be somewhat arbitrary. If we assign a too-optimistic 
(low) upper bound, then the condition to be satisfied by  will be too constrained and we may 
miss some values of range that would otherwise lead to candidate orbits within the given 
element-set partition. If we assign a too-conservative (high) upper bound, then the condition to 
be satisfied by  will be too relaxed and we will have to check possibly many range values that 
lead to orbits outside the given element-set partition. In practice, missing possible candidate 
orbits is a more serious error than having to check too many cases, because the overall 
computation is parallelizable. Hence, we want to be somewhat conservative in how we assign the 
upper bound, but we do not want to be overly so. 
 
Recall from equation (42) and following expressions that the global minimum of  with 
respect to  occurs at the special value   . Moreover, the function  is 
monotonic-increasing with respect to as we move away from the global minimum. It is also 
symmetric with respect to the minimum along the  axis. Therefore, we will seek to move to a 
value of  that is as far from this global minimum as possible, while still being consistent with 
the given element-set partition and the given observational data. 
 
The largest allowable magnitude of  would occur when the station velocity is aligned with the 
orbital velocity and the latter is at its maximum magnitude, namely at the lowest allowable 
perigee: 
 

 

(75) 
 

If   , so that the global minimum of  occurs at a negative value of range rate, 
then the value  will be farther from the minimum than the value  will be. On the 
other hand, if   , so that the global minimum of  occurs at a positive value of 
range rate, then the value   will be farther from the minimum than the value   
will be. Consequently we adopt the following logic: 
 

If  , then we take  as the desired upper bound. 
If  , then we take  as the desired upper bound. 
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Note that the appropriate sign on  is the same as the sign of   . Therefore, these two 
cases give the same value of the upper bound on  when we evaluate equation (42): 
 
  (76) 
 
With this expression, we rewrite the apogee case (74) as 
 
 

 
(77) 
 

	
	

 
(78)	

 
 

 
(79) 

 
Here the quantity , defined as  , is always non-
negative. The roots of the quadratic are 
 
 

 

(80) 

 
We will have real roots if and only if the argument of the square root is non-negative: 
 
 

 
(81) 
 

 
If this condition is not satisfied, then we can eliminate this particular observation from further 
consideration. The reason is that no value of the range will be found that is consistent with both 
the observational data and the given element-set partition. 
 
Investigating this condition for the existence of real roots more closely, we substitute for  
in the definition of   : 
 

 

(82) 

 

 

(83
) 

 
Consequently, the following inequality always holds, even for zero station velocity: 
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(84) 
 

 
This means that the third coefficient (the constant term) in the quadratic form (79) is always 
positive, given this choice of . Assuming that real roots exist, the quadratic will have either 
zero or two positive real roots, depending on the sign of the second coefficient. If , 
then we have no positive roots, only two negative roots. The quadratic is concave-up so the 
inequality is satisfied to the left of the left-most root and to the right of the right-most root. 
However, this condition reduces merely to  because we require a priori that the range be 
non-negative. If the second coefficient is negative,  , then the quadratic has two 
positive real roots. Again, because the quadratic is concave-up, the inequality is satisfied 
between  and the left-most root and to the right of the right-most root: 
 
 

 

(85) 

 
 

 

(86) 
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BOUNDS ON RANGE RATE IMPLIED BY ANGLE AND ANGLE RATE VALUES 
 
Although bounds on the allowable values of range rate are not needed in a Lambert-based track-
initiation method, they may be useful in other types of track initiation and data association. 
Moreover, kinematic inequalities that must be satisfied by range rate still apply, even if the range 
rate will not be used to form the orbit hypotheses. The inequalities may, therefore, help us 
eliminate some observations before hypotheses are formed. It is straightforward to use the 
quadratic form  in equation (42) to derive such bounds. By evaluating  at its 
minimum and maximum with respect to  we are left with conditions to be satisfied by  . 
 
A complication arises with bounding the range rate that we did not have in bounding the range. 
The global minimum orbital speed  may or may not be physically realizable, depending on 
the sign of   . If we have   , then the range corresponding to  is non-
negative, and the global minimum orbital speed consistent with the given data is indeed 
physically possible. However, if we have   , then the range corresponding to  is 
negative, and the global minimum orbital speed consistent with the given data is not physically 
realizable. In this case, we use the constrained minimum   , which corresponds to   . 
 
Assume that   , so that  is physically possible, and consider the perigee case. From 
the inequality (56) we require that the orbital speed-squared be no greater than the specified 
maximum allowable orbital speed-squared: 
 
 

 
(87) 

 
This inequality still holds true if we evaluate the range at its speed-squared-minimizing value 
using equation (44): 
 

 
(88) 

 
This substitution has the effect of lowering the value of , thereby relaxing the restriction on  
compared to what we would have had with the actual value of range. However, this inequality is 
now independent of the range and simplifies as follows: 
 
 

 

(89) 

 
The roots of this quadratic are 
 
 

 

(90) 
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In order to guarantee that the roots are real, it is necessary and sufficient that the argument of the 
square root be non-negative: 
 
 

 
(91) 

 
According to equations (47) – (49) above, the left side of this inequality is simply the global 
minimum of the square of the orbital speed: 
 
 

 
(92) 

 
For a given observation, if this necessary and sufficient condition for the existence of real roots 
of the quadratic expression (89) is not satisfied, then there are no possible values of range rate 
that will produce orbital speeds less than the specified maximum orbital speed. In that case, we 
can discard the given data without forming any range or range rate hypotheses. 
 
For space-based stations, the observing geometry can vary widely and we cannot easily judge in 
advance how often the condition (92) for the existence of real roots might be satisfied. However, 
for Earth-bound stations, we can be more explicit. Because the square bracket in (92) is a 
projection of the station velocity, its magnitude is always less than or equal to the station velocity 
magnitude. The projection vanishes only if the station velocity is in the  plane. Hence we 
can write 
 

 
(93) 

 
 
Consequently, we will have real roots for the quadratic expression (89) if 
 
 

 
(94) 

 
This condition is the same as (66) above, so we can usually expect to have real roots in the case 
of Earth-bound observations. 
 
Now, assuming that real roots for the quadratic (89) do exist, we consider whether the quadratic 
has any positive real roots. Descartes’ rule of signs tells us that (89) will have one positive real 
root, and, therefore, also one negative real root, if the third coefficient is negative, regardless of 
the sign of the second coefficient. The third coefficient is negative provided that 
 
 

 
(95) 

 
 
This condition must hold for observations from both Earth-bound and space-based stations, if we 
are to have one positive real root of the quadratic (89). The square bracket is a projection of the 
station velocity, so its magnitude must be less than or equal to the station velocity magnitude. 
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Hence, for Earth-bound stations, we can reason as before that we are guaranteed a single positive 
real root if 
 

 
(96) 

 
 
This expression is essentially the same as (94) and (66) above. We conclude that, in most 
practical cases with Earth-bound stations, we can expect one real positive root and, therefore, 
necessarily also one negative root. Because the quadratic is concave-up, the inequality (89) will 
be satisfied between the roots: 
 

 

  (97) 

 
 

 

(98) 
 

 
These bounds apply in the perigee case whenever   .  
 
Now consider the apogee case when   . From the inequality (42) we have 
 
 

 
(99) 

 
 
Analogously with the case of range, inequality (74), we seek to assign a somewhat conservative 
(high) upper bound on the value of  with respect to   . In practice, we do not want the 
upper bound to be too conservative, because that would relax the condition on  too much and 
lead us to have to check too many values of range rate. Of course, this is a less serious difficulty 
than having a too-optimistic (low) upper bound on the value of   . The latter would make 
the resulting condition on  too constraining and lead us to miss values of range rate that would 
have produced candidate orbits within the given element-set partition. 
 
Recall from (44) that the value of range at the minimum of  with respect to range is  

 , regardless of the sign of this quantity. Note also that  is monotonic-
increasing with respect to  as we move away from this minimum. Also, for every value of 
range rate, the function  is symmetric with respect to the minimum along the  coordinate 
direction. Therefore, we will seek to move to a value of  that is as far from the minimum as 
possible, while still being consistent with the given element-set partition and the given 
observation. Of course, we will require that the range be non-negative a priori. In fact, the 
largest allowable value of  has already been derived. From equation (14), we have: 
 
 

 
(100) 
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The largest possible value of this function would occur when  is aligned with   , leaving 	
 . In this case, the station position would be aligned with the 

perigee of the orbit, while the satellite is at the highest allowable apogee. In practice, this 
extreme value of maximum range cannot occur, because the size of the Earth prevents this 
viewing geometry. The more general equation (100) accounts for the actual viewing geometry. 
 
We require that this maximum range (100) be real-valued, just as we did for equation (14). 
Hence, the condition (13) applies here also:  . In particular, 
if this latter condition does not hold, then no possible value of the range will lead to orbits within 
the specified element partition. We can discard the observation without forming any hypotheses 
for it.  
 

If the range for the minimum of  with respect to range were to take the value   , 
halfway between  and   , then we would have , because of 

the symmetry of the function. If the global minimum were to the left of   , then we would 

have   , and if the minimum were to the right of   , then we would have  
 . Moreover, if   , so that the minimum of  occurs at a 

negative value of the range, then the value  is always farther from the minimum than is 
the value   . In that case we always have   . On the other hand, if  

 , so that the minimum occurs at a positive value of the range, then either  or 
 could be farther from the minimum, depending on the exact value of  . The 

following logic includes all cases for assigning an upper bound with respect to range for the 
function   : 
 

If   , then the upper bound on   is   . 

If   , then the upper bound on   is   . 
 
Therefore, for the apogee case, inequality (99), we need to consider these two sub-cases. First 
consider the sub-case 
 

 
(101) 

 
 

 
(102) 

 
 

 
(103) 
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Here the quantity  is always 
non-negative. The roots of the quadratic are 
 
 

 

(104) 
 

 
and real roots will exist if and only if the argument of the square root is non-negative: 
 
 

 
(105) 

 
If no real roots exist, then no value of the range rate can be found that results in orbital velocities 
greater than the minimum allowable, for the given element-set partition and the given 
observation. As we noted earlier, this means that the particular observation in question can be 
excluded from further consideration in forming orbit hypotheses, even if hypotheses are being 
formed without explicitly using range rate, as in the Lambert-based approach. If real roots exist, 
then the inequality is satisfied to the left of the left-most root and to the right of the right-most 
root, because the quadratic (103) is concave-up: 
 
 

 

(106) 

 
 

 

(107) 

 
Now we consider the other sub-case for the apogee case. The inequality (99) becomes 
 
 

 
(108) 

 
Then, using (42) with   , we get 
 
 

 
(109) 

 
Notice that setting  causes all terms containing angle rate to vanish. Although angle rate 
does not constrain the range rate in this case, range rate must still satisfy this quadratic condition. 
 
 

 
(110) 

 
The roots of the quadratic are 
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(111) 

 
Real roots of the quadratic (110) exist if and only if the argument of the square root is non-
negative: 
 

 
(112) 

 
If this necessary and sufficient condition for the existence of real roots of the quadratic 
expression (110) is not satisfied, then there are no possible values of range rate that will produce 
orbital speeds greater than the specified minimum orbital speed. In that case, we can discard the 
given observation without forming any range or range rate hypotheses. 
 
For space-based stations, the observing geometry can vary widely and we cannot easily judge in 
advance how often the condition (112) for the existence of real roots might be satisfied. 
However, for Earth-bound stations, we can be more explicit. Because the square bracket in (112) 
is a projection of the station velocity, its magnitude is always less than or equal to the station 
velocity magnitude. The projection vanishes only if the station velocity is aligned with the line-
of-sight unit vector   . Hence, we can write 
 
  (113) 
 
Consequently, we will have real roots for the quadratic expression (121) if 
 
 

 
(114) 

 
This condition is analogous to (66) and similar expressions given above for the perigee cases. Let 
us examine the conditions under which we can expect it to be satisfied. Following the reasoning 
in (66), we can write 
 
	

	

(11
5) 

 
For values of the maximum allowable eccentricity near unity, the maximum allowable 
semimajor axis that will guarantee the existence of real roots of (110) will be markedly restricted 
compared to the perigee case. For example, at   , we have   
approximately. However, with eccentricity this large, we would also require   
in order to have a smallest allowable perigee greater than one Earth radius. We conclude that, at 
least in a useful number of low-maximum-eccentricity cases, we can expect real roots for (110) 
when we have observations from an Earth-bound station. Of course, we should always use the 
exact condition (112) to determine the existence of real roots for (110) rather than the very 
conservative approximate condition (114). 
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Now, assuming that real roots for the quadratic (110) do exist, we consider whether the quadratic 
has any positive real roots. Descartes’ rule of signs tells us that (110) will have one real positive 
root, and, therefore, also one negative real root, if the third coefficient is negative, regardless of 
the sign of the second coefficient. The third coefficient is negative provided that 
 
 

 
(116) 
 

 
This condition must hold for observations for both Earth-bound and space-based stations, if we 
are to have one positive real root of the quadratic (110). For Earth-bound stations, we can reason 
as before that we are guaranteed a single positive real root if 
 
 

 
(117) 

 
This expression is essentially the same as (114) above. We conclude that, in many practical cases 
for Earth-bound stations, we can expect one real positive root and, therefore, necessarily also one 
negative root. Because the quadratic is concave-up, the inequality (110) will be satisfied to the 
left of the negative root and to the right of the positive root: 
 
 

 

(118) 

 
 

 

(119) 

 
For space-based stations, the inequality (116) must be re-examined. The third coefficient of the 
quadratic expression in (110) will be negative only in the case when the smallest allowable 
apogee speed is greater than the station speed. For example, a station in circular orbit must be 
well above the highest allowable apogee for this to occur. However, if (116) is not satisfied, so 
that the third coefficient of (110) is positive, the number of positive real roots depends on the 
sign of the second coefficient. If   , then (110) has no positive real roots, but two 
negative ones. The quadratic is concave up, so the inequality must be satisfied to the left of the 
more negative root and to the right of the less negative root. If   , then (110) has two 
positive roots and the inequality is satisfied to the left of the smaller positive root and to the right 
of the larger positive root. In effect, the inequalities (118) and (119) include all possible cases of 
real roots for observations from both Earth-bound and space-based stations, in the apogee sub-
case (108). 
 
Now consider the case   , so that  is not physically possible, and consider the 
perigee case. From (56), we have 
 
 

 
(120) 
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This inequality still holds true if we evaluate the range at its constrained speed-squared-
minimizing value  according to equation (50): 
 
 

 
(121) 

 
Here we note that this case is equivalent to the special case of   , zero apparent total 
angular rate, in the sense that the resulting inequalities for range rate are the same in both cases. 
When all vectors are resolved in an inertial frame, zero apparent angular rate would, of course, 
be an exceptional circumstance. Should it occur, however, the value of range is not restricted by 
angular rate at that moment, and any of the above analysis that involves division by the total 
apparent angular rate does not apply. However, the range rate is still restricted in the manner 
about to be shown. 
 
The inequality (121) becomes 
 
 

 
(122) 

 
The roots of this quadratic are 
 
 

 

(123) 

 
Real roots of the quadratic (122) exist if and only if the argument of the square root is non-
negative: 
 

 
(124) 

 
For a given observation, if this necessary and sufficient condition for the existence of real roots 
of the quadratic expression (122) is not satisfied, then there are no possible values of range rate 
that will produce orbital speeds less than the specified maximum orbital speed. In that case, we 
can discard the observation without forming any range or range rate hypotheses for it. 
 
For space-based stations, the observing geometry can vary widely and we cannot easily judge in 
advance how often the condition (124) for the existence of real roots might be satisfied. 
However, for Earth-bound stations, we can be more explicit. Because the square bracket in (124) 
is a projection of the station velocity, its magnitude is always less than or equal to the station 
velocity magnitude. The projection vanishes only if the station velocity is aligned with   . 
Hence, we can write 
 
  (125) 
 
Consequently, we will have real roots for the quadratic expression (122) if 
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(126) 

 
This condition is the same as (66) above, so we can usually expect to have real roots in the case 
of Earth-bound observations. 
 
Now, assuming that real roots for the quadratic (122) do exist, we consider whether the quadratic 
has any positive real roots. Descartes’ rule of signs tells us that (122) will have one real positive 
root, and therefore also one negative real root, if the third coefficient is negative, regardless of 
the sign of the second coefficient. The third coefficient is negative provided that 
 
 

 
(127) 

 
This condition must hold for observations for both Earth-bound and space-based stations, if we 
are to have one positive real root of the quadratic (122). For Earth-bound stations, we can reason 
as before that we are guaranteed a single positive real root if 
 
 

 
(128) 

 
This expression is essentially the same as (126) above. We conclude that, in most practical cases 
for Earth-bound stations, we can expect one real positive root and, therefore, necessarily also one 
negative root. Because the quadratic is concave-up, the inequality (122) will be satisfied between 
the roots: 
 
 

 

(129) 

 
 

 

(130) 

 
For space-based stations, the inequality (127) must be re-examined. The third coefficient of the 
quadratic expression in (122) will be negative only in the case when the largest allowable perigee 
speed is greater than the station speed. For example, a station in circular orbit must be well above 
the lowest allowable perigee for this to occur. However, if (127) is not satisfied, so that the third 
coefficient of (122) is positive, the number of positive real roots depends on the sign of the 
second coefficient. If   , then (122) has no positive real roots, but two negative ones. 
The quadratic is concave up, so the inequality must be satisfied between them. If   , 
then (122) has two positive roots and the inequality is satisfied between them. In effect, the 
inequalities (129) and (130) include all possible cases of real roots in the perigee case whenever  

 . 
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Now consider the apogee case. The expressions (41) and (42) together give us the requirement 
that the minimum orbital speed-squared be no less than the lowest allowable orbital speed-
squared: 
 
 

 
(131) 
 

 
In the special cases    or   , the inequality (131) becomes a function of range rate 
only: 
 

 
(132) 

 
 

 
(133) 

 
This expression is the same as (110). The roots of the quadratic are 
 
 

 

(134) 

 
Real roots of the quadratic (133) exist if and only if the argument of the square root is non-
negative: 
 

 
(135) 

 
For a given observation, if this necessary and sufficient condition for the existence of real roots 
of the quadratic expression (133) is not satisfied, then there are no possible values of range rate 
that will produce orbital speeds less than the specified maximum orbital speed. In that case, we 
can discard the observation without forming any range or range rate hypotheses. 
 
For space-based stations, the observing geometry can vary widely and we cannot easily judge in 
advance how often the condition (135) for the existence of real roots might be satisfied. 
However, for Earth-bound stations, we can be more explicit. Because the square bracket in (135) 
is a projection of the station velocity, its magnitude is always less than or equal to the station 
velocity magnitude. The projection vanishes only if the station velocity is aligned with the line-
of-sight unit vector   . Hence we can write 
 
  (136) 
 
Consequently, we will have real roots for the quadratic expression (133) if 
 
 

 
(137) 

 
This condition is the same as (114) above, so we can usually expect to have real roots in the case 
of Earth-bound observations. 
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Now, assuming that real roots for the quadratic (133) do exist, we consider whether the quadratic 
has any positive real roots. Descartes’ rule of signs tells us that (133) will have one real positive 
root, and, therefore, also one negative real root, if the third coefficient is negative, regardless of 
the sign of the second coefficient. The third coefficient is negative provided that 
 
 

 
(138) 

 
This condition must hold for observations for both Earth-bound and space-based stations, if we 
are to have one positive real root of the quadratic (133). For Earth-bound stations, we can reason 
as before that we are guaranteed a single positive real root if 
 
 

 
(139) 

 
This expression is essentially the same as (137) and (114) above. We conclude that, in most 
practical cases for Earth-bound stations, we can expect one real positive root and, therefore, 
necessarily also one negative root. Because the quadratic is concave-up, the inequality (133) will 
be satisfied to the left of the negative root and to the right of the positive root: 
 
 

 

(140) 

 
 

 

(141) 
 

 
These expressions are the same as (118) and (119). For space-based stations, the inequality (138) 
must be re-examined. The third coefficient of the quadratic expression in (133) will be negative 
only in case the smallest allowable apogee speed is greater than the station speed. For example, a 
station in circular orbit must be well above the highest allowable apogee for this to occur. 
However, if (138) is not satisfied, so that the third coefficient of (133) is positive, the number of 
positive real roots depends on the sign of the second coefficient. If  , then (133) has no 
positive real roots, but two negative ones. The quadratic is concave up, so the inequality must be 
satisfied to the left of the most negative root and to the right of the less negative root. On the 
other hand, if  , then (133) has two positive roots and the inequality is satisfied to the 
left of the smaller positive root and to the right of the larger positive root. In effect, the 
inequalities (140) and (141) include all possible cases of real roots in the apogee case. 
 
Hence, in the special cases of    or zero apparent total angular rate, no constraint on 
the possible values of range, depending on angle rate, exists other than the requirement that 
range be non-negative a priori. However, the superposition of the inequalities (129), (130), (140) 
and (141) defines the allowable intervals for range rate. In general, there will be two disjoint 
intervals of range rate in this case, located symmetrically with respect to the value   , one 
interval consisting entirely of negative values and one consisting entirely of positive values. 
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SUMMARY AND CONCLUSION 
 
Our results show that the possible values of both range and range rate can be limited a priori for 
each line-of-sight observation to finite intervals corresponding to a specified partition of the 
element space. The endpoints of the intervals are given explicitly in terms of the angle-based 
observations, station position and station velocity, and can be computed independently for each 
observation. Additional conditions based on the orientation of the orbital plane and special 
solutions of Lambert’s problem, which must be satisfied by range values for pairs of 
observations, can be used to further reduce the number of Lambert solutions needed for the 
initial orbit determinations. All the formulas derived here apply uniformly to Earth-bound and 
space-based observing stations, although we analyze briefly the case of Earth-bound observing 
stations to show the potential range of application of the formulae. We also present explicit 
conditions identifying when a given observation does not correspond to any possible orbit within 
the specified element-space partition. Such observations can be discarded before any data 
association hypotheses or Lambert solutions are produced. 
 
The range and range rate bounds derived in this paper allow a convenient parallelization of the 
task of computing initial orbits in large space surveillance tracking scenarios, which is the phase 
of the tracking job that involves most of the computational complexity. Because the bounds are 
conservative to some extent and not exact, it is possible that some values of range and range rate 
that lie within the bounds given here will lead to candidate orbits that lie outside the specified 
partition of the element space. This fact leads to some inefficiency in the parallelization of the 
initial orbit hypotheses over the whole element space. Essentially, candidate orbits near the 
boundaries of the specified partitions may be generated more than once and would, therefore, 
have to be identified and merged later in the tracking process. The actual cost of this inefficiency 
in particular problems will depend on the observation sets and element partitions of interest, and 
may need to be studied if the scenario is computationally stressing. On the other hand, all the 
orbits within an element-space partition correspond to values of range and range rate that do lie 
within the bounds given here, so that no candidate orbits will be missed merely through this 
choice of bounds. 
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