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Abstract 
There are many algorithms that can be used for correlating observations to established 
orbits and to identify new space objects. A perfect assignment algorithm does not exist 
and a 100% perfect assignment is impossible. That leaves us with the task of choosing an 
algorithm that is “best” by one of several measures.  Some of the basic correlation 
methods are reviewed here, with some discussion of advantages and disadvantages for 
each method. However, no recommendation can be made at this time for handling 
100,000 object catalogs. We do recommend a way to choose the “best” algorithm using 
elements of the assignment process. Specifically the correlation processes of gating, 
miss-distance metrics, and Assignment Matrices are common to all algorithms and can be 
used together with simulations to characterize the assignment problem for 100,000 
objects. 

The Space Surveillance Assignment Problem 
     The backbone of space surveillance is the Space Catalog. The algorithms that are used 
to assign observations to orbits date to the late 1960’s and early 1970’s, when the catalog 
was sparse. A few changes have been made over the years (e.g. SGP4 replaced SGP), but 
the process is basically a single-assignment Greedy Method (which is defined below). 
There are several indications that the current assignment algorithm has difficulties with 
complex tracking scenarios, and as a result the catalog is not as robust as we would like. 
The assignment algorithm is known to cross-tag closely spaced objects, such as multiple 
payloads, the rocket body, and debris or shrouds, all from a single new launch. Further 
evidence is the many months it has taken to catalog the debris from the recent Chinese 
ASAT test, and failure to catalog a recent high eccentricity breakup. 
     Given plans to use more sensitive instruments to track and catalog 100,000-150,000 
objects, there is a need to improve the assignment algorithms. Fear of the complexity of 
the problem has driven many to assume that new science is required and that only the 
most complex algorithms will solve the problem. However, no-one has really examined 
the problem from first principles to characterize the true complexity of the problem and 
thus derive the algorithmic requirements. It is not yet clear whether single hypothesis 
assignment is sufficient, or if multiple hypothesis approaches are necessary for catalog 
maintenance. It is certainly not clear that new science is required. 

Terminology 
     A short review of terminology may be necessary, as the literature uses several terms 
interchangeably, which can be confusing. For example, the “correlation” process that 
results in the “assignment” of observations to an orbit is also called an “association 
process” or an “assignment process” and the software implementation is sometimes 



 

   

called a “tracker”. In the general literature the “observations” are assigned to a “track”; 
which is the ephemeris of the object. Sometimes a “track” is simply a short arc fit to a 
sequence of observations collected by one sensor and sometimes a “track” refers to the 
longer historical ephemeris. A “track state” is the instantaneous array of estimated 
position and velocity (or an equivalent set of 6 orbit parameters) plus ballistic coefficient, 
solar pressure coefficient, observation biases, mean radar cross section, mean visual 
magnitude and any other solve-for parameters that are used to solve the assignment 
problem. An “observation” is any set of “measurements” collected at a common epoch 
from one sensor to one target. For example, if measurements are range, azimuth, 
elevation, and range rate, then the corresponding “observation” is the set of the four 
measurements reported simultaneously. If a sequence of measurements is used to produce 
a short arc position and velocity “track”, then the track can be treated as a six-
dimensional observation; it is advisable to also compute a covariance for a short arc track 
treated as a measurement. A “target” is any space-borne object observed by a sensor, not 
the target of a weapon system. A “sensor” is any measuring device, such as a single-
spectrum or multiple-spectra telescope, radar, ladar, etc. A “frame” is the collection of all 
observations made within the sensor’s field of view or field of regard, such that they 
constitute a set of distinct objects, due to being seen separately and simultaneously1. 
Finally, if observations are assigned to a track and if the orbit determination algorithm 
uses the observations to update the track state, then we say the track is “extended”. 

The Uncorrelated Track (UCT) Problem 
     The Uncorrelated Track (UCT) problem is defined as a collection of single-sensor 
tracks of unknown objects that do not correlate to any known object, nor correlate to any 
other uncorrelated track. UCTs are collected and maintained in a file for a long time, 
hoping for a later match to unravel the mystery. Of course other measurements, for 
known objects, may also end up in the UCT file, if they are not recognized by the real-
time correlation algorithms. This is particularly true after a large maneuver or even a very 
large solar flare. So the UCT Problem involves a persistent UCT population which makes 
assignment more difficult, because the persistent UCTs mask the good observations that 
can be correlated.  

The Marginally Detectable Target Problem 
     The Space Catalog is defined by the tracking data provided by a diverse collection of 
radar and optical sensors on a diverse set of targets and defined by a collection of orbit 
elements or state vectors on various targets. Very few of these sensors have the same 
capability; some can detect targets that others can not detect. This includes targets that 
have significant optical signature, but very low radar cross section, and it includes small 
targets that are detectable to some radars, but not to others. It also includes a difficult set 
of targets that present variable cross sections such as small tumbling fragments, such that 
the targets can be tracked only when the aspect angle is favorable.  
     We’ll refer to these difficult targets as Marginally Detectable Targets (MDTs). MDTs 
are tracked less often than larger targets due to cross-section issues, so the correlation 
process must contend with larger gaps in the data and orbit determination must work 
                                                 
1 Simultaneity is not strictly required, for example all targets found in one 360° sweep of a scanning radar 
could constitute a “frame”, if no target is fast enough to be in two parts of a scan. 



 

   

across longer fit intervals. The key to maintaining orbits for the MDTs may not be the 
correlation algorithm, but in the orbit prediction algorithm, allowing better prediction 
accuracy across long data gaps. 
     It is reasonable to assume that a majority of the UCTs are also MDTs. It is also 
reasonable to conclude that MDTs will always be a source of UCTs, regardless of the 
sensor or the assignment algorithm used.  

Sensor Tasking Complexities 
     The way that space surveillance sensors are used complicates the assignment process 
and handling of MDTs. In many surveillance systems all detected targets are reported to 
the correlation algorithms, and if a target is not detected, then the correlator can use that 
fact to make decisions about the target’s detectability or the track’s reliability. In space 
surveillance for 100,000 objects, however, it may not be practical to report all detections; 
the sheer volume of data would require a very large computer farm. This leads to a 
“track-but-do-not-report” strategy, where the reporting rate is set by policy, and the 
policy is set without regard to the real-time accuracy or reliability of the target orbit. In 
this case the sensor will only report on certain overflight opportunities, and simply 
confirm, but not report, the detected target for any other opportunities. 

Observation Tagging Issues 
     Observation assignment methods often rely on the sensors to tag distinct detections 
with distinct IDs. This aids in counting the number of targets in a frame and in setting up 
the data indices for more complicated correlation methods. Unfortunately radar and 
optical sites do not always tag distinct observations with distinct tracking IDs. These 
problems can arise because of policy and operator procedures and observations on 
multiple targets can be assigned the same tracking ID by the site operator or software. 
     This problem generates a requirement for the centralized correlation algorithm to 
detect distinct targets without relying on the site-assigned target IDs, which complicates 
the assignment problem unnecessarily.  
     One remedy is to allow tracking data to have two IDs, one for the object identified by 
the site operator or computer and another for reporting a distinct target among 
concurrently tracked targets. 

Difficult Operational Arena 
     Observation assignment will take place in an operational arena that includes a 
complex set of target tactics and events, minimally including the following active events: 

1. Maneuvers 
2. Mother-daughter deployment 
3. Proximity operations  
4. Formation flying 
5. ASAT events 
6. Rendezvous 
7. Docking and undocking 
8. Rephase constellation 
9. Breakups 
10. New launches 



 

   

 
     Objects, which use these tactics or suffer these events, are the most critical targets for 
space surveillance, those that may pose the greatest risk to other objects.  Failure to 
assign observations properly for these tactics and events can result in the object going 
“lost” or, if it is “found”, its identity will be unknown. A Space Catalog assignment 
algorithm that correctly assigns 100% of all inactive targets, but fails for any significant 
number of active targets, is unacceptable. 

Fundamental Tracker Components 
We will focus on some basic components to the “tracker”: gates, a distance metric, and 
an assignment matrix. The first two are shown in Figure 1, below, where ×’s are the 
residuals from the new measurements over a prediction interval: 

Established track

Last assignment

x x x x x

Distance

Prediction

Growing gate

 
Figure 1 Basic Elements of a "Tracker" 

 
     The gate established a boundary beyond which data correlation is highly unlikely. A 
simple construct is usually used for a gate so that real possibilities can be quickly 
identified. The distance metric can be as simple as a residual or quite complicated, as 
discussed below. In any case the distance metric is critical to the assignment process. 
     We seek a metric where multiple residuals in different dimensions in different units 
can be converted to a common scalar metric, which simplifies the assignment process. 
We also seek a metric that reflects the likely error in the orbit. 

A Simple Scalar Distance Metric 
Correlation algorithms generally reduce all measurements on one target, collected at an 
instance, to a single scalar metric. A typical unitless scalar metric d can be formed by the 
array of measurements that make up the residuals: 
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     Note that P should be a realistic2 characterization of all uncertainties, including 
position and velocity and relevant biases. In this way the scalar metric can provide a 
complete characterization of the orbit error, bias error, and measurement residuals. 

Other Distance Metrics 
     There are many possible metrics and many are extensions of the simple metric given 
above. For example, consider the problem where a target is marginally detectable, it is 
possible to scale the metric with a function of the probability of detection and / or the 
probability of false alarm: 
 

2 1 * ( , )T
D FAd Y C Y F p p−=  

 
Similarly, if the covariance is very large (a very poorly known track) this simple distance 
metric can be artificially small and the poor track can “steal” tracking data from a good 
track. A classical way to compensate for large covariances is to modify the metric by the 
log of the determinant of the covariance: 
 

2 1 ln( )Td Y C Y C−= +  
Finally, if a sequence of observations is processed to construct a 6-parameter position and 
velocity estimate (X), then the covariance on X can be used to define a scalar metric: 
 

2 1
( )( ) ( )T

Y Xd Y X P Y X−=  
Y(X) can be any representation of the differences, perhaps in orbital elements or some 
other suitable frame. 

The Assignment Matrix 
     The assignment matrix is a construction of known tracks and detected observations; it 
is non-trivial when there are closely spaced objects. For example, consider the case where 
a sensor detects three objects and has three established tracks to work with, as in Figure 2 
below: 
 

                                                 
2 A realistic covariance is required to make this formulation of the miss-distance metric to work properly. 
“How realistic” is not a matter of debate. Generally one or two significant digits of accuracy is sufficient 
for correlation. A realistic covariance is achievable, if one abandons least squares orbit determination for a 
sequential filter, and then properly implements process noise models derived from errors physical errors. 
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Figure 2 Three Tracks Competing For Observations 

 
     Formally, the process of assigning observations to closely spaced tracks is represented 
by a matrix of distances, where the distance metric for each pair-wise combination of 
track and observations is listed. Then the rules for observation assignment are applied. 
Table 1 was generated to represent the situation in Figure 2 at an instant (or for one 
“frame”)3. The distance values are invented for illustration, but approximate the situation 
graphed. 
 

71014T3

358T2

842T1

O3O2O1

 
Table 1 Assignment Matrix for Figure 2 

 
     This is a classical Assignment Matrix, and it is the basis for all assignment algorithms, 
whether it is formally constructed or not. If the metric includes a realistic covariance for 
the track, as defined above, then this assignment table completely characterizes the 
instantaneous decision problem, a fact we will refer to later. 

                                                 
3 A “frame” is the collection of all observations made within the sensor’s field of view (F.O.V.) or field of 
regard (F.O.R.), such that they constitute a set of distinct objects, due to being seen separately and 
simultaneously, or at least within one unique scan of the F.O.R. of the sensor.  



 

   

Three Assignment Methods 
    The purpose of this discussion is to expose strengths and weaknesses of three classical 
assignment algorithms, so that we can make an informed decision when specifying an 
improved tracker for an improved Space Catalog. 
     Many references can be found in the tracking literature to the three assignment 
methods described below. The first two, the Greedy Method and the Global Nearest 
Neighbor method, are basic “text-book” solutions, widely used, easy to understand, easy 
to implement, and therefore the first choice for many applications. Both of these 
algorithms assign one observation to just one track, seeking to make the best assignment 
possible. The Greedy Method can misassign observations when objects are closely 
spaced and both of these algorithms can misassign observations when observations are 
missing (MDTs are present). The third algorithm is the Multiple Hypothesis method; it is 
also a “text-book” method, characterized as a brute-force, “keep all possibilities” 
approach that guarantees that the correct solution is maintained, albeit at a cost of 
keeping a lot of feasible-but-incorrect solutions too. A Multiple Hypothesis algorithm can 
assign the same observation to multiple tracks.  

The Greedy Assignment Method 
     The “Greedy Method” of observation-to-track assignment is exactly as it sounds. 
Given a metric to define the “distance” between the track and the observation, the track 
with the smallest distance wins the assignment without regard for the benefit to or penalty 
on other tracks. An observation is assigned to one and only one track. This is the simplest 
assignment algorithm with the smallest computational burden. 
     Formally, the process of assigning observations to closely spaced tracks is represented 
by a matrix of distances, called the Assignment Matrix, where the distance metric for 
each pair-wise combination of track and observations is listed. Then the rules for 
observation assignment are applied. The following table was generated to represent the 
situation in Figure 2. The distance values are invented for illustration, but approximate 
the situation graphed. 

 
Table 2 Greedy Algorithm Assignment Matrix for Figure 2 

 



 

   

     The Greedy Method would assign each of the observation sequences to the tracks that 
have the best distance as indicated in red. O1 will be correctly assigned, but O2 and O3 
would be misassigned and T3 would erroneously go without any new observations.  As a 
consequence the orbit determination for T1 will probably suffer a high level of data 
rejection and be flagged for manual attention. An analyst would be required to sort out 
the mess. Further T2 will probably continue to steal future T3 observations and T3 might 
go “lost” or might “adopt” subsequently-detected T2 observations, in which case T2 and 
T3 will swap identities. 
     This demonstrates why Greedy Method assignment algorithms used in the current 
Space Catalog have difficulties with closely spaced objects. 

The Global Nearest Neighbor Assignment Method 
     The next simplest track assignment algorithm is called the Global Nearest Neighbor 
(GNN). Given the matrix in Table 2, this method seeks to choose an overall (global) 
assignment that minimizes the sum of the distances (also called the “lowest cost” 
solution), while assigning obviously distinct observations to distinct tracks. In this case 
the lowest cost solution (total = 14) is given by the red entries in Table 3: 

71014T3

358T2

842T1

O3O2O1

 
Table 3 GNN Assignment Matrix for Figure 2 

 
     The GNN algorithm would assign each of the observation sequences to the tracks 
correctly, since the lowest total score would be achieved with T2 choosing the second 
best observation sequence. If all objects are always detectable, the GNN algorithm is a 
fairly robust tracking algorithm.  
     But GNN can make serious misassignments if O2 is not observed (O2 is a MDT and 
that column is blank). In this case the minimum cost (sum = 5) incorrectly assigns O3 to 
T2. This illustrates a weakness in the GNN method.  
     If targets are widely spaced and there are no alternative assignments to consider, then 
the assignment matrix is trivial and the GNN method is the same as the Greedy Method. 
     GNN methods would improve Space Catalog reliability for closely spaced detectable 
targets, whether it is sufficient for 100,000 objects remains to be seen.  



 

   

Evaluating the GNN Assignment Matrix 
     It should be pointed out that there are computationally efficient text-book methods for 
evaluating the assignment table to find the minimum cost. A brute force search of the 
assignment matrix requires approximately N4 operations. 
     In 1957 James R. Munkres2 applied a method of steepest descent and reduced the 
processing requirement to roughly N3 calculations. The Munkres method is an optimal 
method in the sense that it always finds the absolute minimum cost.  
     Several developments converged in 1992 to create a new approach, called the JVC. 
Principle contributors were Jonker and Volgenant3 (1987) and Castanon4 (1992). The 
JVC method employs a mathematical technique called “relaxation” to reduce the problem 
and then follows that with Munkres method applied to the reduced problem. Relaxation is 
a method of finding a minimum cost for a constrained search (constraints couched as 
inequalities) over a bounded range. Relaxation is a useful tool for integer, mixed integer, 
large scale, and non-linear programming applications12.  The JVC algorithm has been 
used extensively in assignment problems for the past 15 years. It does not guarantee 
optimality, but it always converges to something very close to the optimal solution. More 
importantly the JVC algorithm is faster than Munkres method and has replaced Munkres 
in most recent applications. 
     Higher order search, optimization, and relaxation algorithms abound in books and 
journals for mathematics, signal processing, etc. When choosing higher order algorithms 
the question is whether they provide a “better” solution or provide a solution at lower 
computational cost. 

Multiple Hypothesis Assignment Method 
     Multiple Hypothesis assignment is a “brute force” algorithm that is designed to keep 
all possible combinations of assignments and follow the tracks until they prove to be false 
hypotheses.  Revisit Figure 2: 
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Figure 3 Three Tracks Competing For Observations 

 
     A Multiple Hypothesis assignment will result in a growing number of tracks when 
there are multiple feasible possibilities, as in Figure 4, below: 
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Figure 4 Multiple Hypotheses for 3x3 Problem 

 
     The matrix can become more complicated if there are new targets detected, because 
all possibilities have to be accounted for. Then you have new potential hypotheses 
formed by each observation sequence. 
     It is fairly obvious that MHT is a “brute force” approach and the creation of an ever 
increasing number of hypotheses will soon swamp any computer architecture. Hence, a 
method of “pruning” unlikely tracks becomes critically important.  
     Pruning decisions based on whether the object is subsequently detected and confirmed 
are fairly standard. However one has to be sure that an attempt was made to track the 
target before declaring a failure of the hypothesis. If the sensor is a continuously 
operating “fence” and reports all detections, then the pruning algorithm simply waits 
passively for confirmation of a hypothesis, while maintaining a count of the number of 
expected fence penetrations. On the other hand, most sensors only track a target if 
expressly directed to do so (or “tasked” to track the target), in which case it is necessary 
to direct the sensors to track each hypothesis, which will increase the work load for each 
sensor substantially. 
     In summary, MHT is a “brute force” technique, keeping all feasible hypotheses until 
they prove to be false. The advantage to MHT techniques is that the correct assignment is 
almost always made. The disadvantages are in the potential multiplicity of false 
assignments that are made and the potential impact to computer resources and to sensor 
resources. Clearly we only want to invoke MHT methods if there is a substantial 
performance improvement over the simpler techniques. 

How to Select an Assignment Algorithm 
     For the space surveillance problem with 100,000 or even 150,000 objects, we need to 
choose an observation correlation algorithm. We are fairly sure that the Greedy Method is 
insufficient, especially for closely spaced targets, since it has proven to be insufficient for 
18,000 objects. There is a great temptation to choose the most complex algorithm, the 
MHT, because of the apparent complexity of the problem. However, the potential cost of 
MHT also creates a great temptation to avoid MHT.  



 

   

     We will not make a recommendation at this time between single assignment methods 
or multiple hypothesis methods.   
     A thorough analysis of the correlation problem for 100,000 – 150,000 objects has not 
been performed. Although the total size of the Space Catalog will be large, there is no 
evidence yet for how much that will translate into observation misassignments. Due to 
the apparent complexity of the problem, users fear that an Assignment Matrix might be 
very complicated, for example: 
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839578786164636758548978T13
385669741538695456894687759T12

966912669555544587856886494T11
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Table 4 Notional Complex 15×15 Assignment Matrix 

 
     Even when there are a large number of targets simultaneously in the Field of Regard 
of a sensor, they may still be separated sufficiently to make many combinations unlikely 
(grey squares), which will reduce the complexity to the point where GNN methods might 
work well: 
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15T5
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141061T2

205T1
O14O13O12O11O10O9O8O7O6O5O4O3O2O1

 
Table 5 Notional Simplified Assignment Matrix 

 
 
     We recommend that we first quantify the problem and justify selection or rejection of 
single assignment or multiple hypothesis methods. The approach is to determine the 
failure rate for single assignment algorithms. The Assignment Matrix will be constructed 
at regular intervals for each sensor for a large scale simulated catalog. If we simulate the 



 

   

satellite population, consistent with current ESA or NASA population models, include 
such effects as variable cross-section of targets, and simulate sensor Field of Regard, 
Field of View, and detection thresholds of each sensor, then we can construct a 
reasonable time history of all targets versus all sensors. 
     The assignment matrix completely characterizes the correlation problem at any time, 
and knowledge of Truth allows us to measure the misassignment rate for any algorithm. 
A time history of Assignment Matrices can be used to develop a large statistical sample 
of frequency of misassignment, lost tracks, and MDT issues. It may also be useful to 
examine sequences of Assignment Matrices to determine if a misassignment of one 
observation is rectified in subsequent frames. That could lead to a modification of the 
GNN method to consider multiple frames before making a single assignment decision. 
     Ultimately the failure rate of GNN methods will determine whether MHT methods are 
required.   

Final Remarks 
     The prospect of correlating observations to a 100,000 or 150,000-object catalog has 
frightened some analysts and there has been some discussion about adopting the most 
complex correlation methods without evaluating the problem from first principles. There 
has even been discussion about “new science” being required to perform this correlation 
correctly. We do not believe this problem to be that difficult, and encourage a methodical 
approach as outlined above. We should define the correlation failure rate for 100,000 
objects using the Assignment Matrices to drive our algorithm selection process. 
     Finally, although we have not done the analysis and have not selected an algorithm, 
we would be surprised if MHT methods are required to maintain a 100,000-object 
catalog. MHT methods might be required to initialize such a catalog, to start with the 
current 18,000 objects and add 80,000 to 120,000 new objects overnight. But MHT may 
not be required to maintain the larger catalog. 
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