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	    Situational awareness of Earth-orbiting particles is important for human extraterrestrial activities.  Given an optical observation, an admissible region can be defined over the topocentric range / range-rate space, with each point representing a possible orbit for the object.  However, based on our understanding of Earth orbiting objects, we expect that certain orbits in that distribution, such as circular or zero-inclination orbits, would be more likely than others.  In this research, we present an analytical approach for describing the existence of such special orbits for a given observation pass, and investigate topological features of the range / range-rate space by means of singularities in orbital elements.
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Nomenclature

	 A
	:  attributable vector

	 t
	:  time

	 α, δ
	:  topocentric angular position
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	:  extended attributable vector

	 h
	:  altitude of observation location

	Θ,Φ
	:  angular position of observation

	 ρ
	:  topocentric range
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	:  criteria for admissible region

	 E
	:  specific geocentric energy

	 ra
	:  radius at apoapsis

	 rp
	:  radius at periapsis

	 r
	:  function of ρ

	 θ, λ
	:  constants determined by [image: image3.png]




	 PO
	:  geocentric position of observation

	 rE
	:  radius of Earth

	 μ
	:  standard gravitational parameter

	 R
	:  unit topocentric observation vector

	 Q
	:  function of ρ

	f1, g1
	:  constants determined by [image: image4.png]




	 Ω
	:  longitude of ascending node

	 ω
	:  argument of periapsis

	 M
	:  mean anomaly

	l,L,g,G,h,H
	:  Modified Delaunay variables 

	l,L,g,G,h,H
	:  Delaunay variables

	 a
	:  semi-major axis

	 e
	:  eccentricity

	 i
	:  inclination


 Subscripts

	MIN
	:  minimum

	MAX
	:  maximum


 Superscripts
	 ·
	:  time derivative

	 ^
	:  unit vector


1.  Introduction

  Situational awareness of Earth-orbiting particles such as active satellites and space debris is highly important for future human activities in space. Presently, over 300,000 particles have been estimated to exist, and over 80,000 observations are made per day 3). Observations are made either by radar or optical sensors. For optical observations, which are usually made for objects in medium Earth orbit (MEO) and geostationary orbit (GEO), only the angles and angular rates of the track can be determined. That is, the range and range-rate remains largely unknown. Milani et al. have proposed a method for heliocentric orbits where each track is expressed in a 4 dimensional quantity called the attributable vector, and by placing a few physical constraints they restrict the range and range-rate to a region called the admissible region 2). Tommei et al. expanded this method to Earth orbiting objects, and Maruskin et al. introduced ways to determine orbits using admissible regions for multiple observations and their maps in orbit element space 4,1). Discretized points on the admissible region are referred to as Virtual Debris (VD) particles, as each point on the admissible region combined with the attributable vector defines an orbit and position in space. 

  The admissible region can be regarded as a uniform probability distribution for range and range-rate. However, based on our current understanding of Earth orbiting objects, we expect that certain orbits would be more likely than others at different range / range-rate coordinates, such as circular and zero-inclination orbits at GEO altitude 3). With this information, we can evaluate the effectiveness of using circular orbits as initial guesses for uncorrelated passes, which is currently common, as well as devise better initial guesses. For instance, if we determine that the range of a circular solution of some observation does not correspond to that of GEO, we can then guess with some certainty that the object is not in a circular orbit. Therefore, we would like to know where such special orbits exist in the admissible region, and how many. In this paper, we present an analytical approach on describing the existence of circular and zero-inclination orbits for a given observation pass on the general range / range-rate plane. We then present a topological survey of the range / range-rate plane when mapped onto the classical, Delaunay, and modified Delaunay orbital elements. Finally, we determine the likelihood of finding special orbits in real-world observations by showing trends on where they exist on the range / range-rate plane with respect to the admissible region.
  For detailed proofs and explanations, refer to Fujimoto, Maruskin and Scheeres. 5)
2.  Background
  In this section, we review the mathematical definition of the attributable vector and the admissible region.

2.1  The Attributable Vector

  The tracking, orbit determination, and cataloging of artificial objects in Earth orbit is highly important for future human activities in space. Presently, over 300,000 particles have been estimated to exist, and over 80,000 observations are 

made per day 3). Observations are made either by radar or optical sensors. For optical observations, which are usually made for objects in medium Earth orbit (MEO) and geostationary orbit (GEO), only the angles and angular rates of the track can be determined. That is, the range and range rate remains largely unknown, except by placing a few physical constraints, where they can be restricted to some range. Thus, each track can be mathematically expressed in terms of an attributable vector A at time t 4): 
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A discussion of how one may estimate an attributable vector from a given track of data can be found in Maruskin, et al 1). We use J2000 as our coordinate system so that α is the right ascension and δ is the declination. In addition, information regarding time and the location of the observer should be stored for a more complete description of the track, leading to an extended set [image: image6.png]
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(2)

We chose a coordinate system such that Θ is the latitude and Φ is the longitude of the observation point. In the following discussion, we ignore h.

2.2  The Admissible Region

  For some attributable vector A, we can take different values of range and range-rate [image: image8.png]


 to complete the topocentric coordinates of the particle and thus obtain different physical orbits. Visually, we can imagine taking different points in the topocentric range / range-rate plane. However, not all of these orbits are relevant for any given application. Rather, a closed region of the [image: image9.png]


 plane can be defined such that all of the physically relevant orbits are contained within the interior of this region. We define this region as the admissible region, and each discretized point on the admissible region as virtual debris particles (VD’s). A set of criteria [image: image10.png]


 defining the admissible region has been proposed by Tommei, et al, and later refined by Maruskin, et al. 4,1). This set assumes radar observations for objects in low and medium Earth orbits (LEO, MEO):
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(3)
and
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(4)

In this paper, we set (ρMIN, ρMAX) = (0.3, 20) Earth radii as we are interested in all objects observable by optical sensors, which usually lie within an altitude of 2000 kilometers (0.3 Earth radii) and 130,000 kilometers (20 Earth radii). An example of an admissible region is shown in Fig. 1.
3.  Special Orbit Solutions in the Range / Range-rate Plane
  In this section, we investigate the existence of special orbits, namely circular and zero-inclination orbits, in the entire topocentric range / range-rate [image: image11.png]


 plane. This space defines all topocentric spherical coordinates that are mathematically valid. We provide mathematical definitions of circular and zero-inclination orbits. We then prove analytically the number of special orbit solutions for any given [image: image12.png]


, and for both zenith and non-zenith observations. Namely, the maximum number of circular solutions for any [image: image13.png]


 is three, and for zenith observations of objects in prograde motion, the solution is unique. The zero-inclination solution is unique as long as δ≠0.
3.1  Existence of Circular Solutions

  For Earth orbiting objects, a circular orbit exists for any attributable vector as long as ρ > 0.  We can further discuss the expected number of circular orbit solutions by splitting observations into zenith and non-zenith observations.
  A zenith observation is characterized as
[image: image41.png]



(5)

where r = ρ/rE, [image: image14.png]A= |R||/|Po]|



, and θ is the angle between [image: image15.png]mull
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. If we further restrict ourselves to orbits in prograde motion, then λ ≥ 1 and θ < π/2.  Using Descartes’ sign rule, we conclude that the solution for r, and thus ρ, is unique.
  A non-zenith observation is characterized by two equations:
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and
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where
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(10)
Fig. 2 is a general plot of Eq. (6) and (7).  First, consider segment (a)-(d) on the plot for Eq. (6).  Point (a) is where the magnitude of the slope is infinitely large. On the other hand, the slope at (d) is 0. The maximum number of inflection points along such a segment is 2 ((b),(c)). If the curvature of the ellipses is constantly dominant over Q, then the segment will have no inﬂection points. It is impossible for the increase in Q to be constantly dominant, as Q is finite for a finite attributable vector [image: image17.png]


.  Next, Eq. (7) is an inverse function which always goes through the origin.  We can ignore the singularity point if we restrict ρ > 0, f1 > 0, so the curve is continuous, monotonous, and has no inﬂection points. The solution of Eq. (6) and (7) is the intersection of the two curves mentioned above.  For the Earth, Eq. (6) will always enclose the origin, so the two curves must intersect. Furthermore, from the geometry of the curves, the maximum number of solutions is 3 for the Earth, as shown in Fig. 2.
3.3  Existence of Zero-Inclination Orbits

  For all attributable vectors [image: image18.png]


 such that δ≠0, the zero-inclination solution is unique. The reference point for inclination is dependent on the coordinate system, and thus leaves some freedom in the definition of a zero-inclination orbit. We use the ﬁrst point in Aries in our argument. From trigonometry, 
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Taking the time derivative, 
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(12)

These solutions are unique as long as δ ≠ 0. 

  On the other hand, if δ=0, then as long as Θ=π/2 (i.e. zenith observation at the Earth’s equator) and [image: image19.png]


=0, there exists a zero-inclination orbit for any [image: image20.png]


. Otherwise, the solution set is null for finite values of [image: image21.png]


.
4.  Topological Features of the Range / Range-rate Plane
  For a fixed attributable vector [image: image22.png]


, the orbital elements of a debris particle are functions of topocentric range / range-rate 

variables [image: image23.png]


. For some attributable vectors, discontinuities in the angular orbital elements (Ω, ω, M for classical and h, g, l for modified Delaunay) can occur. First, they can occur due to the fact that these elements are modulo 2π. However, these jumps are not physical discontinuities. The orbital elements are simply “wrapping around” their limits. We neglect such discontinuities in the following argument. Second, discontinuities can occur due to singularities in the orbital elements on the admissible region. These singularities are triggered by the existence of a rectilinear, circular or zero-inclination orbit at that [image: image24.png]


 coordinate. We neglect rectilinear orbits as they are rarely of concern in real-world observations. Also, the singularity caused by a zero-inclination orbit is not fundamental in that it can be removed by rotating the coordinate system. The singular variables cannot exist on a particular contour line, and it becomes a “source” of contour lines over [image: image25.png]


 space.
4.1  Singularities in Classical Orbital Elements

  Particular combinations of singular orbital elements are associated with circular and zero-inclination orbits: we observe singularities for ω and M if a circular orbit exists and for ω and Ω if a zero-inclination orbit exists. This phenomenon is due to the fact that the definitions of orbital elements are dependent on each other; e.g. M is defined as the angle between the orbiting object and the periapsis. Therefore, if the periapsis (ω) is undefined, then so is M. Similarly, for zero-inclination orbits, ω and Ω are undefined. As an example, Fig. 3 shows a contour map for orbital element ω over [image: image26.png]


 space containing circular and zero-inclination orbits. The admissible region defined by [image: image27.png]


 is shaded in black. As predicted by the analytical results from the previous section, we see no more than three circular solutions and only one zero-inclination solution. Furthermore, the rectilinear solution is well outside of the admissible region, justifying how we can neglect them. Analysis on the location of the circular solutions with respect to the admissible region on [image: image28.png]


 space is given in Section 5.
4.2  Singularities in Modified Delaunay Variables

  For modified Delaunay variables, all angles are defined with respect to the reference line (first point in Aries.) The dependency between angular variables is thus resolved. Although variables that characterize the periapsis (g) and the ascending node (h) will remain singular for circular and zero-inclination orbits, respectively, all other variables are unaffected. Furthermore, l remains non-singular at these special orbit coordinates. For this reason, modified Delaunay variables are recommended when discussing special orbits based on singularities of orbital variables. Fig. 4 shows a 
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contour map for the same attributable vector as Fig. 3, but mapped with modified Delaunay variable l. Note that the discontinuity that lies toward the top-left corner of the plot is due to l being modulo 2π.
4.3  Traces Around Special Orbit Solutions
  To further investigate singularities in orbital elements, we can take closed traces on [image: image29.png]


 plane and map them onto Delaunay and modified Delaunay variables to create three two-dimensional plots based on their symplectic (canonical) coordinate-conjugate momentum pairs. The definition of Delaunay and modified Delaunay variables is discussed in Section 2. For traces which include either a circular or zero-inclination orbit, the topology of the maps changes fundamentally: on a momentum pair space for the angular variable that is singular, the map of the trace becomes open. We can think of the angular axis as wrapping around a cylinder. So, for a trace which does not enclose a special orbit, the map retains its loop shape on the surface of the cylinder. On the other hand, the map of a trace which encloses a special orbit loops around the cylinder itself. Fig. 5 and Fig. 6 show a trace enclosing a circular orbit and zero-inclination orbit, respectively, and their maps onto modified Delaunay space. For the trace enclosing a circular solution, g is singular at the circular solution coordinate, and so the trace crosses the ±π contour line for g only once. The projection of the trace onto G-g space is open, and all other projections remain closed. Similarly, for a trace enclosing a zero-inclination solution, the projection of the trace onto H-h space is open, and all other projections remain closed.
  Only for modified Delaunay variables, and as long as the traces are taken near the admissible region as defined by [image: image30.png]


 so that rectilinear orbits are negligible, we are able to tell what type of orbit is enclosed by looking at the G-g or H-h map individually.
5.  Special Orbit Solutions and the Admissible Region

  In the previous section, we found that special orbits exist for most geocentric observations. There is no guarantee, however, that such solutions lie within the admissible region and be considered in further analysis. For instance, the circular solution for the observation of a highly eccentric orbit can lie outside of the admissible region. This is because the topocentric angular rates near periapsis can be so large that the circular solutions have semi-major axes a < 1.03, thus violating [image: image31.png]


3. Conversely, the angular rates near apoapsis can be so small that the circular solutions are a > 25, which violates [image: image32.png]


4 (see Section 2.)
  We can also think of the opposite case where circular orbit solutions tend to exist inside the admissible region. If this were true, then the current practice of using circular orbits as initial guesses for uncorrelated passes could be detrimental for rapid and reliable orbit determination. That is, if any observation is consistent with a physically probable circular orbit, then we can legitimately guess a highly eccentric orbit as circular. A more preemptive approach would be to calculate the range of the circular solution given some attributable vector. If the value does not correspond to that of GEO, then the satellite is not likely to be in a circular orbit altogether, as optical observations of Earth-orbiting objects are usually applied to those in high-altitude orbits. In either case, we are interested in the location of these singular points with respect to the admissible region. Here, we only consider the circular orbit solutions, since the definition of zero-inclination orbits relies heavily on the coordinate system.
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5.1  LEO to GEO Transfer Example

  Let us consider a LEO to GEO transfer (GTO) with a = 3.85 Earth radii, e = 0.719, i = 0.489 rad, Ω = 3.48 rad and ω = 0. The radius at periapsis is 1.08 Earth radii, and the radius at apoapsis is 6.62 Earth radii. GTOs are a practical test case, because they are both highly eccentric and common 3). We can systematically choose points of observation on the Earth to account for the various attributable vectors that are possible for this orbit. For the current argument, we took a line of longitude every 7.2 degrees and chose 50 points equidistantly per longitude for a total of 2,500 points.
  For most probable observations of the GTO, the circular orbit solution is a viable option as a potential orbit. Particularly, when optical observations are more appropriate than radar (||M|| > 0.12), circular orbit solutions are included in the admissible region at all observation points for over 98% of the time. Fig. 7 is three plots, each with longitude (Φ) on the horizontal axis and latitude (Θ) on the vertical axis, which represent observations for the GTO at different values of mean anomaly: M = −π, −0.15, −0.13 and −0.12. M = −0.12 corresponds to the mean anomaly where the minimum range of observation is ρ = 0.3 Earth radii, or the lower end of ρ for criterion [image: image33.png]


2 of the admissible region. That is, radar is a better means of observation for ||M|| < 0.12. Each point on the plot corresponds to an observation point on the Earth. The blue x’s are where the observation occurred above the local horizon (f1> 0). Of these points, the green +’s are points where at least one circular solution is included in the admissible region. The
red dots are where the object is below the local horizon (f1<0), and are negligible. 

  We notice that the blue and green regions overlap almost completely for M = −π and −0.15. Points where circular solutions are excluded are at the rim of the blue region, where the observation of the object is made near the horizon (f1≈0). Analytically, we find that objects on or near the local horizon can take ρ = 0 as a circular solution, and thus these solutions violate [image: image34.png]


1.  For M = −0.13, circular solutions also become excluded for observation points toward the center of the blue region, or for near-zenith observations (f1 ≈ 1). This behavior can be shown analytically: outside of the horizon, the range of the circular solution is minimum at zenith. For ||M|| < 0.161, observation points where the circular solution is excluded exist. The object on the GTO passes this region in about 4 minutes, which is approximately 1.4% of the total time (10.1 hours) the object is beyond the reach of radar sensors, and thus likely observed by optical sensors.
6.  Conclusion

  In this paper, we discussed the existence of circular and zero-inclination orbit solutions for an optical observation track of an Earth-orbiting particle. Based on the mathematical definition of these special orbits, we looked at the analytical solutions of range and range-rate when given some attributable vector [image: image35.png]


. We found that for circular orbits, there exists at least one and up to three solutions for all observations above the local horizon, and the solution is unique for zenith observations made for objects in prograde motion. For zero-inclination orbits, the solution is unique unless the observer is at the Earth’s equator. We then discussed topological features of the range / range-rate space; namely, singularities in the orbital elements and modified Delaunay variables. These singularities are easily visualized by taking closed traces on the range / range-rate plane and mapping them onto Delaunay and modified Delaunay space. When the trace includes a special orbit, some of the maps are no longer closed. Especially for modified Delaunay variables, a singularity in one variable is directly linked to one kind of special orbit in most practical situations, and thus they are useful. Finally, we determined the location of the circular orbit solution both in the sky and relative to the admissible region on the range range-rate plane for traces of highly eccentric orbits. We found that even for a GEO transfer orbit, visible circular solutions most likely remain within the admissible region. The current practice of using circular orbits as initial guesses for uncorrelated optical observations is not effective, as any orbit can be consistent with a physically plausible circular orbit. The next step in this research is to utilize these results to better characterize the admissible region and further streamline orbit determination.
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Fig. 1. An admissible region for X = (A, Θ, Φ) = (2.064, −0.2378, 0.5072, 0.0654, 4.8, 0.1). The different shadings represent the different regions which satisfy each criterion in set, thus the admissible region is where all types of shading overlap, or the region outlined by black.








Fig. 2. A general plot of Eq. (6) (solid line) and Eq. (7) (dotted line).








Fig. 3. Contour map of ω. Attributable vector (A,Θ,Φ) = (1.9906, −0.0284, 0.4815, 0.0064, 4.8000, 1.4000) was used. Singularities caused by circular orbits are marked with an *, by zero-inclination orbits an x, and rectilinear orbits a □.





Fig. 4. Contour map for l for the same attributable vector as Fig. 3.





Fig. 5. A trace (top left of the set of plots) that encloses a circular orbit, and its projections on to the Delaunay variable spaces based on attributable vector (A,Θ,Φ) = (2.0636, −0.2378, 0.5072, 0.0654, 4.8000, 0.1000).





Fig. 6. A trace that encloses a zero-inclination orbit, and its projections on to the Delaunay variable spaces based on the same attributable vector as Fig. 5.  The plot for G-g space is still closed; g is simply being modded by 2π.





Fig. 7. The visibility of the GTO and the location of the circular orbit solution in the � space for different instances of M.
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