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                                                                        Introduction 
      
The purpose of this report is to develop the methods and algorithms for determination of orbits of 
objects with a big area to mass ratio. Objects with a big area to mass ratio (AMR>1 m2/kg) are 
usually located on high Earth orbits. Their orbits greatly evolve under the influence of solar 
radiation. The disturbing influence of solar radiation considerably exceeds disturbances caused by 
the eccentricity of the Earth gravity field and the influence of the Moon and Sun gravitation. 
Because of the lack of knowledge on the orientation and form of objects, the acceleration produced 
by the solar radiation pressure changes greatly in its value and direction. This makes it impossible 
to determine the orbit for long intervals of time and results in a considerable increase of the 
forecasting errors. A necessity arises to include in the number of the refined parameters the vector 
characterizing the solar radiation value and the direction of its pressure, along with the object state 
vector. 
An approach is considered for the determination of the orbits and motion forecasting of objects 
with a big AMR. A limited span of the measurement interval in some cases is insufficient for the 
determination of a necessary set of parameters. The direction of the vector of acceleration caused 
by the solar radiation pressure can vary considerably, but in a limited range, deviate from the 
direction Sun-object. An algorithm is proposed for a joint determination of the object orbital 
parameters and the vector of additional acceleration, caused by the solar radiation pressure with an 
account of a priori information. An algorithm is described for formation of a weight matrix of a 
priori vector taking into account the range of its variation in value and direction. The questions are 
discussed of matching newly generated orbits of objects with a big AMR to the orbital catalog. A 
matching algorithm is proposed taking into account the errors in determination of objects’ state 
vectors and the density of occupation of a considered part of orbital parameters space with other 
objects. An example is given of determination and forecasting of a real SO orbit and estimation of 
error forecasting on the basis of real measurements obtained by ground facilities. 

 

1. Joint determination of a SO orbital parameters and parameters characterizing the 
influence of the solar radiation on the SO motion. General formulation of the problem 

 
The set of refined parameters { },Q q P  of motion of an object with a big AMR includes: 

– six SO orbital elementsq  
– components of the vector P  of additional parameters characterizing the influence of the 

solar radiation pressure on the SO motion 
The determination of the vector of refined parametersQ  by the measurement data , 1, 2,...,i N=iψ  
is carried out by a maximum-likelihood method by means of the functional minimization 
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where 



( ) ( ), 1, 2,...,c
i i i i N= − =ξ Q ψ ψ Q  are discrepancies of the measured and the calculated values of 

all types of measurements; 

iψ  — measurement; 
c
iψ  — its calculated analog; 

1
i iW K −= – measurement weight matrix; 

iK  — covariance matrix of the measurement errors 

Measurement iψ  is considered as a vector, the components of which are, generally speaking, 
interconnected by a correlation dependence. Dimensions im  of vectors iψ  can differ. In a particular 
case, im  can be equal to 1 (scalar measurement). It is supposed that vector measurements 

{ }1 2, ,..., m
i i iψ ψ ψiψ  composing the functional (1) are not dependent on one another. At the same 

time, a presence of correlations is assumed between components j
iψ  and k

iψ  of vector iψ . These 
correlations and the accuracy of measurement iψ  are characterized by the covariance error matrix 

iK . 

In this report the following is considered as possible measurement types: 
– Distance 
– Radial speed 
– Angular measurements of right ascension and declination 
– Priori data on the SO state vector 
– Priori data on the orbital elements 
– Priori data on the solar radiation pressure vector 

An algorithm for the calculation of these measurements calculated values is specified in section 4.1. 
For minimization of functional Φ  a standard iteration Newton method is used. At each k -th stage a 
system of equations is solved which is usually called a system of normal equations 

A Q b∆ =  (2) 

where matrix A  and vector b  of the system of equations (2) are determined by the formulas 
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and the parameters Q  are refined: 

1m mQ Q Q−= + ∆  
The process of formation of a system of normal equations involves accumulation of the matrix, 
right parts and functional in proportion to the serial procession of incoming data. To make such 
accumulation possible it is necessary to have the following information for each successive 
measurement 
� Dimension of vector of the measured parameter m  (it is possible that 1m = ). The 

dimension depends on the type of measurement and is determined after its retrieval. 
� Measured vector ψ  (scalar in a particular case) 



� Weight matrix (weight in a particular case) characterizing the measurement error. The 
matrix is selected together with the measured parameter. 

� Calculated vector ψ  and a matrix of its derivatives ψ
Q

∂
∂

 by the refined parameters vector 

For each type of measurement a special module is developed providing calculation of the vector of 
its calculated value cψ  and a matrix of derivates by the current vector of the SO kinematic 

parameters — 
cψ

X
∂
∂

. 

2. SO motion model and equations 
 
SO motion model considers 

• Earth gravitational influence represented by a sum of central and eccentric parts of the 
gravity field potential 

• Moon and Sun gravitational influence 
• Solar radiation pressure influence 

In the inertial reference system EJ2000 connected with the equator and Earth equinox of epoch 
J2000 the SO motion equations are represented in the form 
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where 
r  — SV coordinates in the reference system EJ2000, 

2000
GCS

GCS EJAr r=  — SV coordinates in the reference system GCS (Greenwich coordinate system), 

2000
moon GCS
GCS EJ moonr A r=  — Moon coordinates in the reference system GCS, 

v  — SV speed vector in the reference system EJ2000, 

2000
GCS

GCS EJAv v=  — SV speed vector in the reference system GCS, 

3µ  — Earth gravitation constant, 

2000
GCS
EJA  — matrix of transfer from EJ2000 to GCS 

2000EJ
GCSA = 2000

TGCS
EJA    — matrix of transfer from GCS to EJ2000 transposed in relation to matrix 

2000
GCS
EJA  

gff  — (gravity field) function for calculation of the SV disturbing acceleration caused by 
eccentricity of the gravitation field 

pmf  — (point mass) function for calculation of the SV disturbing acceleration caused by the 
influence of the gravitation fields of the Sun, Moon, and planets 

spf  — (solar pressure) function for calculation of the SV disturbing acceleration caused by the solar 
radiation pressure. 

The first three sums in the right parts of the equations (4) are conditional on the influence by the 
Earth, Moon, and Sun gravitation fields on the SV motion. Formulas for calculation of these 
disturbances are well described in literature (for example [1]). A detailed description of a particular 



application of algorithms is beyond the scope of this report. The next section describes a model of 
the solar radiation influence on the SO motion. 

 

3. Model of disturbing acceleration caused by the solar radiation influence 
 
The model used for the calculation of the disturbing accelerations caused by the solar radiation 
pressure for objects with a big AMR is based on the following assumptions: 

– The disturbing acceleration direction can in some limits differ from the direction Sun-SO. 
– On different trajectory sections the disturbing acceleration value and direction can change 

discontinuously. 
– The disturbing acceleration value and direction are described by a 3-dimension vector of 

parameters ip  which preserves a constant value within a section. 

– On the selected interval of time the SO trajectory is continuous and described by a system 
of differential equations within one model and one SO state vector related to a specified 
moment of time. 

In Figure 1, as an example, a section of the SO trajectory is schematically shown covering the 
interval of time [ ]4 0,t t . The state vector { }0 0 0,X r v determining the SO trajectory is related to the 

end of that interval 0t . The interval [ ]4 0,t t  is divided into four sections [ ]4 3,t t , [ ]3 2,t t , [ ]2 1,t t , 

[ ]1 0,t t  ( 4 3 2 1 0t t t t t< < < < ). The parameters vector ip  determines the solar radiation pressure 

influence on the SO motion on the section [ ]1,i it t −  

 
Figure 1. Diagram for making a model of the solar radiation pressure consideration 

The force F  of the solar radiation pressure at the distance 1AU≈150⋅109 m (Earth orbital radius), 
on a perfectly reflecting surface with the area of 1 m2 located orthogonally to the direction towards 
Sun, amounts approximately to 9.1⋅10-6 N. For a perfectly absorbing surface this force is 
approximately equal to 4.5⋅10-6 N. In a general case F  can be expressed by the formula [2] 

64.5 10rF c −≈ ⋅ N 
where rc  — reflection index depending on the surface properties: 1rc =  corresponds to complete 
radiation absorption, 2rc =  corresponds a complete radiation reflection. 
Let A  be the area of the SO midsection in relation to the direction towards Sun, and m  is its mass. 
In the case when the surface completely absorbs the solar radiation flux, the disturbing acceleration 

0
spf  is directed along the vector Sun-SO and its value amounts to 64.5 10 A

m
−⋅  m/s2. As for a near-

Earth SO the direction Sun-SO is a little different from the direction Sun-Earth, the disturbing 
acceleration vector can be calculated by the formula 
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where 

sunr  — Sun geocentric position in the reference system EJ2000. 

In the real situation the SO surface does not completely absorb sunlight. The direction of the 
disturbing acceleration vector spf  can be different from the direction of the Sun radiation flux and 

its modulus can be more than the modulus of vector 0
spf . In this case the disturbing acceleration 

vector can be calculated by the formula: 

( )6 64.5 10 4.5 10sp e e n n s sp p p Bf b b b p− −= ⋅ + + = ⋅  (6) 

where 

{ }, , T
e n sp p pp =  is a vector of parameters determining the solar radiation pressure influence 

ep  is a component of this vector lying in the ecliptic plane and orthogonal to the direction towards 
Sun 

np  is a component of vector p  directed orthogonally to the ecliptic plane 

sp  — is a component of vector p  directed from the Sun towards Earth 
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 is composed of vectors eb , nb , sb which are calculated by the formulas: 
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 is a block vector directed orthogonally to the ecliptic plane 

e s nb b b= ×  is a block vector lying in the ecliptic plane and orthogonal to the direction towards the 
Sun. 
Vectors eb , nb , sb  represent three mutually orthogonal directions. Projections of vector p  on 
these directions with an accuracy of a multiplier, comply with the components of the disturbing 
acceleration spf . If an object completely absorbs radiation, the components ep  and np , directed 
orthogonally to the light flux, are equal to zero, and the component sp  is equal to the area to mass 
ratio: 

0,0, A
m
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 

p
 

The actual values ep , np , sp  are more or less different from these values. 

 

4. Algorithm for the joint determination of a SO orbital parameters and parameters 
characterizing the influence of the solar radiation on the SO motion 

 
In section 1 there is a summary description of a standard procedure for the refinement of a vector of 
the estimated parameters Q  by the measurement data. Formulas (2) and (3) provide the 



minimization of the functional (1) by the iteration method. Although, for the solution of a particular 
problem it is necessary to develop an algorithm for the calculation of the measurement calculated 
values cψ , 1, 2,...,i N=  by the specified vector of the refined parameters Q , and an algorithm for 

the calculation of a matrix of partial derivatives 
c
i∂

∂
ψ
Q

 from the calculated parameters by the refined 

parametersQ . These algorithms are described below. 

 

4.1. Calculation of a measured parameter of a matrix of its partial derivatives by the 
specified vector of the estimated parameters 

A procession interval [ ]0,mt t  is considered divided into m  subintervals by the moments of time 

0 1 ... mt t t> > > . The total of the refined parameters is defined by the vector { }0 1, ,..., mQ q p p , 
where 0q  is the SO orbital elements attributed to the moment of time 0t , ip  are the parameters 
determining the light pressure influence in the interval [ ]1,i it t − . 

In the moments of time 1 2, ,..., Nt t t′ ′ ′  the measurements 1 2, ,..., Nψ ψ ψ  are carried out. 

In the moment of time kt ′  located within the interval[ ]1,i it t −  the dependence of the calculated value 
c
kψ  on the set of the refined parameters Q  is determined by the formula 

 

( )( ) ( )( )( )( )( )( )0 1 1 1 1 1 1 0 0, , , ,..., , , , , ... , , ...c c
k i i k i i it t X t t− − −′ ′=ψ X q p p p ψ X p p X X p X q  (7) 

From this representation it is obvious that the calculated value cψ  depends on the orbital elements 

0q , and the set of parameters 1 1, ,...,i i−p p p  characterizing the solar radiation pressure in all 
intervals after the moment kt ′ . 

Expressions of the type ( )1, ,j jt −X p X  denote the dependence of the SO state vector X , attributed 

to the moment of time t  on the value of the vector jp  in the interval 1,j jt t −
    and the state vector 

1j−X  attributed to this interval beginning time — 1jt − . The calculated realization of this 
dependence is carried out by a numerical integration of the motion equations (4) with the constant 
value of the vector jp . 

The representation ( )0 0X q  expresses the dependence of the SO state vector in the moment of time 

0t  on the orbital elements 0q . This vector is calculated by the formulas of Kepler’s undisturbed 
motion. 

Partial derivatives from the measured functions cψ  by the estimated parameters are calculated by 
the formulas: 

c cψ ψ X
Q X Q
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4.2. Calculation of derivatives from the SO current state vector by the vector of estimated 
parameters 

The matrix of derivatives ∂
∂

X
Q

 from the SO state vector X  in the current moment of time t  by the 

specified vector of the estimated parameters Q  consists of several blocks as shown in Figure 2. If 
ψ is changed in the moment of time t  in k -th trajectory subinterval, then 

1

0,..., 0
k m

X X
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∂ ∂= =
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1k kt t t+ < ≤  (8)

 

Figure 2. Matrix of derivatives ∂
∂

X
Q

 

Table 1 gives an idea of the derivatives location in the matrix blocks in various subintervals of the 
SO trajectory. The subintervals are denoted by the symbol τ  with the index: kτ  corresponding to 
the subinterval[ ]1,k kt t − . To form various types of derivatives, three different calculation methods 
are used. The table cells are marked in different ways depending on the calculation method used for 
calculation of derivatives: 

– Off-diagonal matrix blocks ( k i> ) are equal to zero, because the SO state vector does not 
depend on the light pressure influence on the previous motion sections. 

– The diagonal table cells are surrounded by the black frames. Their feature is that the number 
of a section k , on which the derivatives are calculated, is equal to the number i  of the 
refined vector ip  ( k i= ). These derivatives are calculated in the process of the integration 
of the equations in variations with the renewal of the initial conditions matrix at each 
transfer to a new subinterval. 

– The double frame marks the derivatives 
0

X
q

∂
∂

 from the vector of the current SO kinematic 

parameters X  by the refined elements of its orbit 0q . They are calculated by continuous 
numerical integration of the equations in variations, without renewal of the initial 
conditions. 

– In the grey background the formulas are printed in the table cells under the diagonal — 
k i< . In this calculation variant the derivatives are calculated by multiplication of the three 
matrixes 

1

1 0 1 1 1

1 0 1 0 0

k k k k

i k i k i i

−

− − − −

− −

 ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
= = =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

X q X X XX X X X
p X p q X p q q p

(9)

his case the derivatives by the parameters jp  are used, as obtained in the previous trajectory 
section. 
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5. Software implementation of the algorithm for joint determination                                    
of a SO orbital parameters and parameters characterizing                                             

the solar radiation influence on the SO motion 
 
From the proposed methods the algorithm for the joint determination of a SO orbital parameters 
and the parameters characterizing the solar radiation influence on the SO motion is implemented in 
software. For the algorithm applicability verification, a SO is selected, discovered in summer 2008 
(number 90121 in the catalog of the Institute of Applied Mathematics of Russian Academy of 
Sciences). Its tracking was started, but several times it was lost and found again. To demonstrate 
the algorithm work, an interval from 2009/06/17 to 2009/07/30 is selected. For estimation of the 
method effectiveness, the calculations were carried out in two variants: 

1. By the traditional method: refinement of 7 parameters — 6 components of the SO state 
vector and one value of the solar radiation pressure ratio with the assumption that it’s 
directed on the line Sun-SO; 

2. Refinement of 9 parameters under the developed method:6 components of the SO state 
vector and 3 components of the vector characterizing the solar radiation influence on the SO 
motion in the following directions: 
– Along the line Sun-SO, 
– Orthogonal to the line Sun-SV, in the ecliptic plane, 
– Orthogonal to the line Sun-SV, orthogonal to the ecliptic plane. 

In processing measurements there is always a problem of a measurement interval selection. A short 
measurement interval does not provide sufficient accuracy of the refined parameters, characterized 
by the a priori covariance error matrix. A long measurement interval leads to the occurrence of 
discrepancies due to the nonconformity of the accepted model to the real SO motion. As a criterion 
of the processing quality, the following value is taken 

0 0
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a aq xC

X X
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 ∂ ∂  =   ∂ ∂   
where 



xC  is the a priori covariance error matrix 

a  is the major orbital semi-axis 

0X  is the SO state vector attributed to the moment of refinement 0t  

o cσ −  is the root-mean square weighted value of the deviation of the calculations from their 
calculated analogs. 

The value q  gives an idea of the obtained solution quality: it decreases with a decrease of the a 
priori semi-axis error and increases with an increase of the calculation discrepancies, if the 
accepted model ceases to conform to the SO real motion. 
The comparison of the effectiveness of the SO motion parameters determination, using parametric 
problems 7 and 9, was carried out by the following pattern (Figure 3). The last day of the 
procession interval was excluded from the procession and was used for the estimation of the 
solution quality as a control interval. The smaller value of the root-mean square discrepancies in the 
control interval is represented by a better solution, from the point of calculation of the target 
destination for the following night. The refined state vector was attributed to the moment of the last 
measurement included in procession, i.e. one day before the end of the measurement interval. The 
parameters were refined by the increasing measurement interval by means of engaging earlier 
measurements in procession. At each such interval 7 and 9 parameters were refined. The obtained 
data are specified in Tables 2 and 3. For comparison of the results of 7 and 9-parametric problems, 
the data of these tables are combined and represented in Table 4. 

Figure 3  

 

                                                Table 2. Refinement of 7 parameters 

 

Year 2009 Area to 
mass ratio 

Mean 
weighted 

discrepancie
s 

q-quality 
criterion 

Average 
measurement 

deviations in the last 
interval (seconds of 

arc) 

07/28-07/29 28.1508 0.5366 0.000647 314.3 
07/27-07/29 28.34854 0.9103 0.000564 500.5 
07/25-07/29 26.07779 2.2140 0.000145 253.9 
07/24-07/29 25.44437 9.0488 0.000436 106.1 

Refinement moment 

Control 
interval 

Increasing length of the forecasting 
interval 



07/22-07/29 24.98914 9.0545 0.000146 51.4 
07/21-07/29 24.96849 8.4534 0.000135 51.7 
07/17-07/29 25.99957 10.2770 0.000083 217.0 
07/16-07/29 25.83116 10.7606 0.000081 191.1 
07/14-07/29 26.11147 10.2065 0.000028 161.3 
7/13-07/29 26.07779 10.7191 0.000030 167.5 

07/11-07/29 26.18535 16.2660 0.000037 247.3 
07/10-07/29 26.12234 16.1309 0.000033 251.3 
07/09-07/29 26.10387 16.2201 0.000032 243.9 
07/08-07/29 26.12017 15.8457 0.000030 244.1 
07/07-07/29 26.12668 15.8964 0.000029 251.0 
07/05-07/29 26.24946 20.6431 0.000033 324.7 

                                           Table 3. Refinement of 9 parameters 
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07/28-07/29 17.92264 -14.1308 -6.5819 0.5252 0.019023 716.2 
07/27-07/29 12.1545 -23.4844 -10.8963 0.7215 0.006577 1108.4 
07/25-07/29 23.16927 -9.53716 -4.6414 0.7738 0.000557 110.6 
07/24-07/29 30.68774 10.34116 3.5419 6.4424 0.002450 546.4 
07/22-07/29 25.70187 1.511299 0.1586 8.6071 0.000586 112.1 
07/21-07/29 25.54107 0.846371 -0.1575 8.1666 0.000338 98.2 
07/17-07/29 25.04781 0.362886 -0.1401 8.1893 0.000108 62.0 
07/16-07/29 25.2488 0.206432 -0.08148 10.4331 0.000122 72.9 
07/14-07/29 26.0854 0.001086 0.02933 10.2102 0.000050 145.1 
07/13-07/29 26.04628 -0.00217 0.07388 10.6226 0.000051 133.7 
07/11-07/29 26.05606 0.011951 0.2542 14.9034 0.000068 103.1 
07/10-07/29 26.06475 -0.02064 0.3139 14.5065 0.000057 112.7 
07/09-07/29 26.05932 -0.04563 0.3270 14.9430 0.000059 122.2 
07/08-07/29 26.11256 -0.06628 0.3346 14.7600 0.000054 137.7 
07/07-07/29 26.11039 -0.04998 0.3205 14.6828 0.000053 131.5 
07/05-07/29 26.17992 0.05867 0.2009 20.0063 0.000072 136.7 

                        Table 4. Comparison of results of 7 and 9-parametric problems 

 
Procession interval 

length Year 2009 Average deviations 
in the control section

Average deviations 
in the control section

-28 07/28-07/29 314.3 716.2
-27 07/27-07/29 500.5 1108.4
-25 07/25-07/29 253.9 110.6



-24 07/24-07/29 106.1 546.4
-22 07/22-07/29 51.4 112.1
-21 07/21-07/29 51.7 98.2
-17 07/17-07/29 217.0 62.0
-16 07/16-07/29 191.1 72.9
-14 07/14-07/29 161.3 145.1
-13 07/13-07/29 167.5 133.7
-11 07/11-07/29 247.3 103.1
-10 07/10-07/29 251.3 112.7
-9 07/09-07/29 243.9 122.2
-8 07/08-07/29 244.1 137.7
-7 07/07-07/29 251.0 131.5
-5 07/05-07/29 324.7 136.7

In Figure 4 these deviations are represented in the graphical form. The crimson line corresponds to 
the solutions of the 7-parametric problem (one parameter for description of the solar radiation 
influence). The blue line corresponds to the solutions of the 9-parametric problem (3 additional 
parameters). It is obvious that the forecasting error in the second variant is better as the 
measurement interval length is more than 10 days. 
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Figure 4. The axis of abscissas — time in days from the beginning of the measurement interval. 
The axis of ordinates — average deviations of the measured values from the calculated ones 
(seconds of angle). The vertical line marks the optimal interval length. 
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