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Introduction

The purpose of this report is to develop the methods and algorithms for determination of orbits of
objects with a big area to mass ratio. Objects with a big area to mass ratio (AMR>1 m?/kg) are
usually located on high Earth orbits. Their orbits greatly evolve under the influence of solar
radiation. The disturbing influence of solar radiation considerably exceeds disturbances caused by
the eccentricity of the Earth gravity field and the influence of the Moon and Sun gravitation.
Because of the lack of knowledge on the orientation and form of objects, the acceleration produced
by the solar radiation pressure changes greatly in its value and direction. This makes it impossible
to determine the orbit for long intervals of time and results in a considerable increase of the
forecasting errors. A necessity arises to include in the number of the refined parameters the vector
characterizing the solar radiation value and the direction of its pressure, along with the object state
vector.

An approach is considered for the determination of the orbits and motion forecasting of objects
with a big AMR. A limited span of the measurement interval in some cases is insufficient for the
determination of a necessary set of parameters. The direction of the vector of acceleration caused
by the solar radiation pressure can vary considerably, but in a limited range, deviate from the
direction Sun-object. An algorithm is proposed for a joint determination of the object orbital
parameters and the vector of additional acceleration, caused by the solar radiation pressure with an
account of a priori information. An algorithm is described for formation of a weight matrix of a
priori vector taking into account the range of its variation in value and direction. The questions are
discussed of matching newly generated orbits of objects with a big AMR to the orbital catalog. A
matching algorithm is proposed taking into account the errors in determination of objects’ state
vectors and the density of occupation of a considered part of orbital parameters space with other
objects. An example is given of determination and forecasting of a real SO orbit and estimation of
error forecasting on the basis of real measurements obtained by ground facilities.

1. Joint determination of a SO orbital parameters and parameters characterizing the
influence of the solar radiation on the SO motion. General formulation of the problem

The set of refined parameters Q{q, P} of motion of an object with a big AMR includes:

— six SO orbital elements q

— components of the vector P of additional parameters characterizing the influence of the
solar radiation pressure on the SO motion

The determination of the vector of refined parametersQ by the measurement data y,,i=12,...,N
is carried out by a maximum-likelihood method by means of the functional minimization

®(Q)= IZ]_V;&-T (Q)WE, (Q) (1)

where



& (Q)=w,—y(Q),i=12,..,N are discrepancies of the measured and the calculated values of

all types of measurements;

Vi measurement;

y; — its calculated analog;
W, = K;' — measurement weight matrix;

K, — covariance matrix of the measurement errors

Measurement y, is considered as a vector, the components of which are, generally speaking,
interconnected by a correlation dependence. Dimensions m, of vectors y, can differ. In a particular
case, m, can be equal to 1 (scalar measurement). It is supposed that vector measurements

v, {@Dil,%z,mﬂ/),-m} composing the functional (1) are not dependent on one another. At the same

time, a presence of correlations is assumed between components v/ and v of vector v,. These
correlations and the accuracy of measurement y, are characterized by the covariance error matrix
K.

In this report the following is considered as possible measurement types:
— Distance
— Radial speed
— Angular measurements of right ascension and declination
— Priori data on the SO state vector
— Priori data on the orbital elements
— Priori data on the solar radiation pressure vector

An algorithm for the calculation of these measurements calculated values is specified in section 4.1.
For minimization of functional @ a standard iteration Newton method is used. At each £ -th stage a
system of equations is solved which is usually called a system of normal equations

AAQ=b (2)

where matrix 4 and vector b of the system of equations (2) are determined by the formulas
T
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and the parameters Q are refined:

Q,=Q,,+AQ

The process of formation of a system of normal equations involves accumulation of the matrix,
right parts and functional in proportion to the serial procession of incoming data. To make such
accumulation possible it is necessary to have the following information for each successive
measurement

= Dimension of vector of the measured parameter m (it is possible that m=1). The
dimension depends on the type of measurement and is determined after its retrieval.

= Measured vector y (scalar in a particular case)



=  Weight matrix (weight in a particular case) characterizing the measurement error. The
matrix is selected together with the measured parameter.

= (Calculated vector y and a matrix of its derivatives % by the refined parameters vector

For each type of measurement a special module is developed providing calculation of the vector of
its calculated value y° and a matrix of derivates by the current vector of the SO kinematic
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2. SO motion model and equations

SO motion model considers

e Earth gravitational influence represented by a sum of central and eccentric parts of the
gravity field potential

e Moon and Sun gravitational influence

e Solar radiation pressure influence

In the inertial reference system EJ2000 connected with the equator and Earth equinox of epoch
J2000 the SO motion equations are represented in the form

r=v

: (4)
V= _/“LE :_3 + Agééooofgmv (rGCS ) + fpm (r> + fsp (r>

where

r — SV coordinates in the reference system EJ2000,

Foes = Aot — SV coordinates in the reference system GCS (Greenwich coordinate system),

moon

__ A GCS . .
Tocs = AL 000w, — Moon coordinates in the reference system GCS,

v — SV speed vector in the reference system EJ2000,

GCS

Vees = Ag oY — SV speed vector in the reference system GCS,

4, — Earth gravitation constant,

A% matrix of transfer from EJ2000 to GCS

EJ 2000

AEJ2000=|:AGCS ]T . . . .
oes ao0o | — matrix of transfer from GCS to EJ2000 transposed in relation to matrix

GCS
AEJ 2000

fgf

eccentricity of the gravitation field

— (gravity field) function for calculation of the SV disturbing acceleration caused by

f, — (point mass) function for calculation of the SV disturbing acceleration caused by the

influence of the gravitation fields of the Sun, Moon, and planets
f,, — (solar pressure) function for calculation of the SV disturbing acceleration caused by the solar

radiation pressure.

The first three sums in the right parts of the equations (4) are conditional on the influence by the
Earth, Moon, and Sun gravitation fields on the SV motion. Formulas for calculation of these
disturbances are well described in literature (for example [1]). A detailed description of a particular



application of algorithms is beyond the scope of this report. The next section describes a model of
the solar radiation influence on the SO motion.

3.  Model of disturbing acceleration caused by the solar radiation influence

The model used for the calculation of the disturbing accelerations caused by the solar radiation
pressure for objects with a big AMR is based on the following assumptions:

— The disturbing acceleration direction can in some limits differ from the direction Sun-SO.

— On different trajectory sections the disturbing acceleration value and direction can change
discontinuously.

— The disturbing acceleration value and direction are described by a 3-dimension vector of
parameters p, which preserves a constant value within a section.

— On the selected interval of time the SO trajectory is continuous and described by a system
of differential equations within one model and one SO state vector related to a specified
moment of time.

In Figure 1, as an example, a section of the SO trajectory is schematically shown covering the
interval of time [7,,7,]. The state vector X, {r,, V,} determining the SO trajectory is related to the
end of that interval #,. The interval [t4,t0] is divided into four sections [t4,t3], [t3,t2], [tz,tl],
[t.t,] (t,<t;<t,<t <t,). The parameters vector p, determines the solar radiation pressure

influence on the SO motion on the section [#,,7,_, ]
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Figure 1. Diagram for making a model of the solar radiation pressure consideration

The force F of the solar radiation pressure at the distance 1AU=150-10° m (Earth orbital radius),
on a perfectly reflecting surface with the area of 1 m* located orthogonally to the direction towards
Sun, amounts approximately to 9.1-10° N. For a perfectly absorbing surface this force is
approximately equal to 4.5-10°N. In a general case F can be expressed by the formula [2]

F~c4510°N

where ¢, — reflection index depending on the surface properties: ¢, =1 corresponds to complete
radiation absorption, ¢, =2 corresponds a complete radiation reflection.

Let A be the area of the SO midsection in relation to the direction towards Sun, and m is its mass.

In the case when the surface completely absorbs the solar radiation flux, the disturbing acceleration

f° is directed along the vector Sun-SO and its value amounts to 4.5-10"’£ m/s”. As for a near-

sp
m
Earth SO the direction Sun-SO is a little different from the direction Sun-Earth, the disturbing
acceleration vector can be calculated by the formula
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where

r,, — Sun geocentric position in the reference system EJ2000.

su

In the real situation the SO surface does not completely absorb sunlight. The direction of the
disturbing acceleration vector f, can be different from the direction of the Sun radiation flux and

its modulus can be more than the modulus of vector f; . In this case the disturbing acceleration

vector can be calculated by the formula:

-6 -6
f,=4510°(pb,+pb, +pb )=45-10°Bp ©6)

where

p= { Doy Dys Dy }T is a vector of parameters determining the solar radiation pressure influence

p. 1s a component of this vector lying in the ecliptic plane and orthogonal to the direction towards
Sun

p, 1s a component of vector p directed orthogonally to the ecliptic plane

p, — 1s a component of vector p directed from the Sun towards Earth

be
Matrix Byb, » is composed of vectors b, , b,, b, which are calculated by the formulas:
bS
r,, . .
b, =——*-is a block vector directed from Sun towards Earth
rvun
Yo, XV, . . -
b, =—#—" is a block vector directed orthogonally to the ecliptic plane
rSlH’l x VSlH’l

b, =b_xb, is a block vector lying in the ecliptic plane and orthogonal to the direction towards the
Sun.
Vectors b,, b

these directions with an accuracy of a multiplier, comply with the components of the disturbing
acceleration f . If an object completely absorbs radiation, the components p, and p,, directed

b, represent three mutually orthogonal directions. Projections of vector p on

no

orthogonally to the light flux, are equal to zero, and the component p_ is equal to the area to mass

oo
m

The actual values p,, p,, p, are more or less different from these values.

ratio:

4.  Algorithm for the joint determination of a SO orbital parameters and parameters
characterizing the influence of the solar radiation on the SO motion

In section 1 there is a summary description of a standard procedure for the refinement of a vector of
the estimated parameters Q by the measurement data. Formulas (2) and (3) provide the



minimization of the functional (1) by the iteration method. Although, for the solution of a particular
problem it is necessary to develop an algorithm for the calculation of the measurement calculated

values y°, i =1,2,..., N by the specified vector of the refined parameters Q, and an algorithm for

the calculation of a matrix of partial derivatives %i from the calculated parameters by the refined

parameters Q . These algorithms are described below.

4.1. Calculation of a measured parameter of a matrix of its partial derivatives by the
specified vector of the estimated parameters

A procession interval [t,,t,] is considered divided into m subintervals by the moments of time
ty>t >..>t . The total of the refined parameters is defined by the vector Q{qo,pl,...,pm},
where q, is the SO orbital elements attributed to the moment of time #,, p, are the parameters

determining the light pressure influence in the interval [ti , tH] .
In the moments of time ¢/,7,,...,#, the measurements y,,y,,...,\y, are carried out.

In the moment of time #, located within the interval[t,,7,_,] the dependence of the calculated value

vy, on the set of the refined parameters Q is determined by the formula

‘I’c (X<t/£’q09pi’pi719"'ﬂpl)) - \Ilc (X(tli’pi’)?(til’pil’X("'X<tl’pl’X0 <q0 >) >))) M

From this representation it is obvious that the calculated value y* depends on the orbital elements
q,, and the set of parameters p,,p, ;,....p; characterizing the solar radiation pressure in all

intervals after the moment ¢, .

Expressions of the type X(t,p X j_1> denote the dependence of the SO state vector X, attributed

to the moment of time ¢ on the value of the vector p; in the interval[t j,tjfl] and the state vector

X, attributed to this interval beginning time — ¢, . The calculated realization of this
dependence is carried out by a numerical integration of the motion equations (4) with the constant
value of the vector p ;.
The representation X, (qo) expresses the dependence of the SO state vector in the moment of time
t, on the orbital elements q,. This vector is calculated by the formulas of Kepler’s undisturbed
motion.
Partial derivatives from the measured functions Wy by the estimated parameters are calculated by
the formulas:

oy®  oy° oX

0Q 09X 0Q




4.2. Calculation of derivatives from the SO current state vector by the vector of estimated
parameters

. o 0X : .
The matrix of derivatives 70 from the SO state vector X in the current moment of time ¢ by the

specified vector of the estimated parameters Q consists of several blocks as shown in Figure 2. If
y is changed in the moment of time ¢ in k -th trajectory subinterval, then

X _ 0 OX _ 0 L, <t<t (8)
op, o op, o -t
N . ot | -
6| & |oX |ax ox
\l/ dEj{J dﬁ 1 (‘)ﬁr‘ 2 dﬁ m
< 6 = < 3>

Figure 2. Matrix of derivatives g—X

Table 1 gives an idea of the derivatives location in the matrix blocks in various subintervals of the
SO trajectory. The subintervals are denoted by the symbol z with the index: 7, corresponding to
the subinterval[tk,tkfl]. To form various types of derivatives, three different calculation methods

are used. The table cells are marked in different ways depending on the calculation method used for
calculation of derivatives:
— Off-diagonal matrix blocks (k >1i) are equal to zero, because the SO state vector does not
depend on the light pressure influence on the previous motion sections.

— The diagonal table cells are surrounded by the black frames. Their feature is that the number
of a section k, on which the derivatives are calculated, is equal to the number i of the
refined vector p, (k=1i). These derivatives are calculated in the process of the integration

of the equations in variations with the renewal of the initial conditions matrix at each
transfer to a new subinterval.

— The double frame marks the derivatives S—X from the vector of the current SO kinematic
do

parameters X by the refined elements of its orbit q,. They are calculated by continuous

numerical integration of the equations in variations, without renewal of the initial
conditions.

— In the grey background the formulas are printed in the table cells under the diagonal —
k <i. In this calculation variant the derivatives are calculated by multiplication of the three
matrixes

oX  oX oX,, 0X oq, X, 0X (axk1 }1 X,

oq, ) Op;

)
op, OX, Op aq, X, , Op, oq,

his case the derivatives by the parameters p; are used, as obtained in the previous trajectory

section.



Table 1

Estimated parameters
p m p 2 pl qO
0 oX oX
~ ~— T
op, aq, l "
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0 | & | a n |5
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g
N
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5.  Software implementation of the algorithm for joint determination
of a SO orbital parameters and parameters characterizing
the solar radiation influence on the SO motion

From the proposed methods the algorithm for the joint determination of a SO orbital parameters
and the parameters characterizing the solar radiation influence on the SO motion is implemented in
software. For the algorithm applicability verification, a SO is selected, discovered in summer 2008
(number 90121 in the catalog of the Institute of Applied Mathematics of Russian Academy of
Sciences). Its tracking was started, but several times it was lost and found again. To demonstrate
the algorithm work, an interval from 2009/06/17 to 2009/07/30 is selected. For estimation of the
method effectiveness, the calculations were carried out in two variants:

1. By the traditional method: refinement of 7 parameters — 6 components of the SO state
vector and one value of the solar radiation pressure ratio with the assumption that it’s
directed on the line Sun-SO;

2. Refinement of 9 parameters under the developed method:6 components of the SO state
vector and 3 components of the vector characterizing the solar radiation influence on the SO
motion in the following directions:

— Along the line Sun-SO,
— Orthogonal to the line Sun-SV, in the ecliptic plane,
— Orthogonal to the line Sun-SV, orthogonal to the ecliptic plane.

In processing measurements there is always a problem of a measurement interval selection. A short
measurement interval does not provide sufficient accuracy of the refined parameters, characterized
by the a priori covariance error matrix. A long measurement interval leads to the occurrence of
discrepancies due to the nonconformity of the accepted model to the real SO motion. As a criterion
of the processing quality, the following value is taken

» Oa C. Oa '
X, X,

where

q=0



C, is the a priori covariance error matrix

a is the major orbital semi-axis

X, is the SO state vector attributed to the moment of refinement £,

0, . 1s the root-mean square weighted value of the deviation of the calculations from their

calculated analogs.

The value g gives an idea of the obtained solution quality: it decreases with a decrease of the a

priori semi-axis error and increases with an increase of the calculation discrepancies, if the
accepted model ceases to conform to the SO real motion.

The comparison of the effectiveness of the SO motion parameters determination, using parametric
problems 7 and 9, was carried out by the following pattern (Figure 3). The last day of the
procession interval was excluded from the procession and was used for the estimation of the
solution quality as a control interval. The smaller value of the root-mean square discrepancies in the
control interval is represented by a better solution, from the point of calculation of the target
destination for the following night. The refined state vector was attributed to the moment of the last
measurement included in procession, i.e. one day before the end of the measurement interval. The
parameters were refined by the increasing measurement interval by means of engaging earlier
measurements in procession. At each such interval 7 and 9 parameters were refined. The obtained
data are specified in Tables 2 and 3. For comparison of the results of 7 and 9-parametric problems,
the data of these tables are combined and represented in Table 4.

Increasing length of the forecasting

interval
Control
interval
Refinement moment
Figure 3
Table 2. Refinement of 7 parameters
e e
Year 2009 Area to. 'welghted' q-qua'hty deviations in the last
mass ratio discrepancie criterion .
S interval (seconds of
arc)

07/28-07/29 28.1508 0.5366 0.000647 314.3
07/27-07/29 28.34854 0.9103 0.000564 500.5
07/25-07/29 26.07779 2.2140 0.000145 2539
07/24-07/29 25.44437 9.0488 0.000436 106.1




07/22-07/29 24.98914 9.0545 0.000146 51.4
07/21-07/29 24.96849 8.4534 0.000135 51.7
07/17-07/29 25.99957 10.2770 0.000083 217.0
07/16-07/29 25.83116 10.7606 0.000081 191.1
07/14-07/29 26.11147 10.2065 0.000028 161.3
7/13-07/29 26.07779 10.7191 0.000030 167.5
07/11-07/29 26.18535 16.2660 0.000037 247.3
07/10-07/29 26.12234 16.1309 0.000033 251.3
07/09-07/29 26.10387 16.2201 0.000032 243.9
07/08-07/29 26.12017 15.8457 0.000030 244.1
07/07-07/29 26.12668 15.8964 0.000029 251.0
07/05-07/29 26.24946 20.6431 0.000033 324.7
Table 3. Refinement of 9 parameters
Area to mass ratio
Q Q |72]
g g S 2
k5 o Q J= g
29 g | z= :
Year 2009 S & = S .8 MSD q o
o 2 Q o B, o
£ o 23 &
E £ | £38 :
A= ©) <
07/28-07/29 | 17.92264 -14.1308 -6.5819 | 0.5252 0.019023 716.2
07/27-07/29 12.1545 -23.4844 | -10.8963 | 0.7215 0.006577 1108.4
07/25-07/29 | 23.16927 -9.53716 -4.6414 | 0.7738 0.000557 110.6
07/24-07/29 | 30.68774 10.34116 3.5419 | 6.4424 0.002450 546.4
07/22-07/29 | 25.70187 1.511299 0.1586 | 8.6071 0.000586 112.1
07/21-07/29 | 25.54107 0.846371 -0.1575 | 8.1666 0.000338 98.2
07/17-07/29 | 25.04781 0.362886 -0.1401 | 8.1893 0.000108 62.0
07/16-07/29 25.2488 0.206432 | -0.08148 | 10.4331 0.000122 72.9
07/14-07/29 26.0854 0.001086 0.02933 | 10.2102 0.000050 145.1
07/13-07/29 | 26.04628 -0.00217 0.07388 | 10.6226 0.000051 133.7
07/11-07/29 | 26.05606 0.011951 0.2542 | 14.9034 0.000068 103.1
07/10-07/29 | 26.06475 -0.02064 0.3139 | 14.5065 0.000057 112.7
07/09-07/29 | 26.05932 -0.04563 0.3270 | 14.9430 0.000059 122.2
07/08-07/29 | 26.11256 -0.06628 0.3346 | 14.7600 0.000054 137.7
07/07-07/29 | 26.11039 -0.04998 0.3205 | 14.6828 0.000053 131.5
07/05-07/29 | 26.17992 0.05867 0.2009 | 20.0063 0.000072 136.7

Table 4. Comparison of results of 7 and 9-parametric problems

Procession interval

Average deviations

Average deviations

length Year 2009 in the control section | in the control section
-28 07/28-07/29 3143 716.2
-27 07/27-07/29 500.5 1108.4
-25 07/25-07/29 253.9 110.6




-24 07/24-07/29 106.1 546.4
-22 07/22-07/29 514 112.1
-21 07/21-07/29 51.7 98.2
-17 07/17-07/29 217.0 62.0
-16 07/16-07/29 191.1 72.9
-14 07/14-07/29 161.3 145.1
-13 07/13-07/29 167.5 133.7
-11 07/11-07/29 2473 103.1
-10 07/10-07/29 251.3 112.7
-9 07/09-07/29 243.9 122.2
-8 07/08-07/29 244.1 137.7
-7 07/07-07/29 251.0 131.5
-5 07/05-07/29 324.7 136.7

In Figure 4 these deviations are represented in the graphical form. The crimson line corresponds to
the solutions of the 7-parametric problem (one parameter for description of the solar radiation
influence). The blue line corresponds to the solutions of the 9-parametric problem (3 additional
parameters). It is obvious that the forecasting error in the second variant is better as the
measurement interval length is more than 10 days.

1200

1000 -

800 -

600

400 -

.

b

0 T T T T T
0 5 10 15 20 25 30

200

Figure 4. The axis of abscissas — time in days from the beginning of the measurement interval.
The axis of ordinates — average deviations of the measured values from the calculated ones
(seconds of angle). The vertical line marks the optimal interval length.
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