PARALLEL ALGORITHM FOR TRACK INITIATION FOR OPTICAL
SPACE SURVEILLANCE
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We propose a type of admissible-region analysis for track initiation in multi-
satellite problems when angles are the primary observable. For a specified
rectangular partition in the space of orbital elements, we present explicit upper
and lower bounds, and other constraints, for the values of range and range rate
that will lead to initial orbit hypotheses (data association hypotheses) associated
with that partition. These bounds allow us to generate candidate orbits in an
embarrassingly parallel fashion because each element-space partition can be
handled independently of the others. Measured or derived angle rates provide
additional bounds on range and range rate, also permitting the same
parallelization.

INTRODUCTION

We begin with the angles-only case, in which angle rate values are not available or are too
inaccurate for reliable use. Assume that we have a pair of line-of-sight unit vectors u; and wu; ,
measured at time ¢; at station position R; and time ¢; at station position R;, respectively. Assume
without loss of generality that ¢; >¢; . We want to test the hypothesis that these two
observations are associated with the same space object. To this end, we attach a set of
hypothetical range values, {pi,m,m =1,2, } and {pj,n ,n=12, } respectively, to each of
these measured unit vectors and then generate candidate orbits by solving Lambert’s problem for
each of the pair-wise combinations of hypothetical orbital position vectors r;,, = R; + p; 0
and r;, = R; + p;, u; . In principle, we can consider all possible pairs of observations and solve
the family of Lambert problems for each pair. Then each hypothetical orbit from the solution of
Lambert’s problem is a data association hypothesis that must be either confirmed or eliminated
through comparisons with other observational data. Given enough range hypotheses for each
observed line of sight, we are guaranteed to generate a viable candidate orbit for every object that
has been observed at two or more distinct times. However, the Cartesian product of the set of
range values for each observed line of sight with the sets of range values from every other line of
sight implies a possibly prohibitive number of Lambert solutions to generate and check. The
computational complexity for generating hypothetical orbits on this approach is quadratic in the
number of observed lines of sight and also quadratic in the number of range hypotheses that we
attach to the observations.
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How should we limit the number of range hypotheses to make the total number of candidate
orbits manageable while also generating candidates that are likely to correspond to real orbits of
interest? For the purposes of this discussion, let us seek to generate hypotheses for orbits that lie
only in a bounded region of semimajor axis a , eccentricity e , inclination / and right ascension
of the ascending node (1 , namely, within a partition of the element space specified by the
intervals [aMIN ,aMAx] , [eMIN ,eMAx] . [IMIN JIMAX] and ['QMIN 'QMAX] . Then, to the extent
that we can restrict the generation of hypothetical orbits to a specified partition of the space of
orbital elements, we have parallelized the task of building a catalog of objects detected within that
partition. The reason is that each partition can be handled independently. In the approach outlined
here, all the observations would have to be considered for each partition of the space of orbit
elements. However, by constructing upper and lower bounds on range for each measured line of
sight for each partition of the element space, we limit the number of range hypotheses that have to
be considered for each partition. This approach allows us to consider a manageable number of
range hypotheses for each partition, simply by making the partitions small enough and using
more processors to cover the whole element space.

We seek explicit bounds on range and possibly range rate that can be applied for each
individual angle-based observation, or at most to pairs of angle-based observations. Even with the
further restriction that hypothetical orbits be elliptical and Keplerian (which we accept) and even
allowing the possibility that the observation may include angle rate values, it may not be obvious
that efficient bounds having these properties can be obtained. Exact bounds would have to be
based on some admissible-region analysis of the type developed by Milani,' Tommei,” Maruskin,’
Fujimoto®* and others.™® For example, denoting the gravitational parameter by u , we write the
first integrals of Keplerian motion as

energy: E = (F-F)/2—p/lr| (1)
angular momentum: h=rxr 2)
Laplace vector:  pue =1 X (r X r) — ur/||r|| 3)

Given the vector triangle relation r = R + pu and its time derivative for each observation, we can
define admissible regions in the (p, p) plane for each partition in the space of elements by means
of inequalities such as

—u/Qamy) < E < —pu/Qayax) “4)
cos Iyax < (h/[|h]]) - k < cos Iy Q)
emin < llell < emax (6)

Here K is the north polar unit vector in the Earth-centered inertial frame. For each observation,
the values of range and range rate that satisfy these inequalities will result in orbits that lie only
within the given partition of the space of elements. DeMars and Jah’ have shown what the
admissible regions look like for partitions of semimajor axis and eccentricity by a numerical
treatment of inequalities equivalent to (4)—(6). Maruskin et al.> have shown how the admissible
regions evolve in time and how the overlap of the admissible regions for different observations
can help solve the data association problem. Tommei’ and Farnocchia® have also addressed the
data association problem in terms of admissible regions. However, even though Egs. (1)—(6) can
be reduced to polynomial forms in range and range rate, each relation is coupled in both variables
and the polynomial degree is high, preventing us from obtaining explicit expressions for range
and range rate in terms of the given data. Moreover, the usual admissible-region analysis leads
nowhere if angle rates are not available. For example, the track-initiation method of DeMars et
al.*? involving multiple hypotheses on range and range rate, requires both angle and angle rate
values.



Our emphasis on generating candidate orbits with a Lambert-based approach in the angles-
only case may require some explanation. Certainly, the bounds on range that we present here
could be used in a variety of ways with other angles-based initial orbit determination methods.
All the traditional methods of angles-only orbit determination, plus the modern methods of
Gooding,'"® Mortari and Karimi,'' and others, rely on solving for the range by either a root-finding
method or an optimization method. Such algorithms can always be made to work more reliably
when rigorous upper and lower bounds on the unknown quantity are available. However, one
encounters at least three difficulties in trying to apply direct angles-only methods to a large,
multiple-target catalog-building scenario.

First, although the range bounds presented here allow one to accept or reject candidate
solutions based on range, for methods like Gooding’s the range estimation is tantamount to the
complete solution. Therefore, with a direct angles-only method one still has to compute the
complete orbit solution in terms of the observations in order to find out if the range estimate
satisfies the bounds. In our proposed Lambert-based approach, the range bounds allow us to avoid
most of the potential computation for the candidate orbits.

Second, the direct angles-only methods do not scale to large problems as well as a Lambert-
based method does. Given N observations of line of sight, the computational load of Lambert-
based methods is proportional to N2, because two observations per data association hypothesis
are needed. The “constant” of proportionality is itself quadratic in the number of range
hypotheses that must be considered for each line of sight. However, as noted above, the latter
number can be driven down to manageable size in each partition of the element space by making
the partitions small. With traditional methods of angles-only initial orbit determination, one faces
a computational load that is proportional to at least N3, because at least 3 observations must be
associated together to compute the range and hence the candidate orbit. The methods developed
by Mortari and Karimi'' are more robust than traditional methods, but these also require at least 3
observations per association hypothesis. In fact, the approach of Mortari and Karimi works better
with more observations per association hypothesis, but then one faces a computational load that
scales like N*, N°, or even higher.

Third, a Lambert-based method, ideally implemented, will produce a candidate orbit for every
object that has been observed at least twice. In comparison, a direct angles-based method, such as
Gooding’s, will produce candidate orbits only for those real objects that have been observed at
least 3 times. An N* method will produce candidate orbits only for those real objects that have
been observed at least 4 times, and so on. Hence, the Lambert-based method may do a more
complete job of generating viable candidate orbits from real datasets, while scaling more
favorably than the direct angles-based methods for large numbers of observations.

In the present analysis, we take a geometric and kinematic approach that leads to explicit
upper and lower bounds on the possible values of range for each observation, given only angle
data at discrete times. In fact, we describe several inequalities that must be satisfied
simultaneously, and we can take the most restrictive superposition of the different bounds as our
working result. In case angle rates are available, we can obtain explicit upper and lower bounds
on range rate, as well as additional bounds on range. It may happen that, for a given observation,
there are no values of the range or range rate that lead to orbits within the given element-space
partition, so that the observation can be eliminated from further consideration. We describe
explicit conditions for the existence of possible values of range and range rate, in terms of the
observation itself.



BOUNDS ON RANGE IMPLIED BY ANGLES

Here we present bounds on range that must hold for each observed line of sight. Assuming
that all orbits of interest are elliptical, require that the orbital radii lie between the maximum
specified apogee and the minimum specified perigee:

[amin (1 — emax)]? < lIrll? < [amax(1 + emax)]? (7)

The values of range that correspond to these limits on orbital radius can be found explicitly by
inserting the vector triangle relationship r = R + pu . Considering the perigee and apogee cases
separately, we arrive at a set of quadratic inequalities that restrict the possible values of range to
finite intervals. It is easy to isolate the range in these inequalities to produce explicit expressions
for the allowable intervals. The requirement that range be non-negative further reduces these
intervals. The requirement that range be real-valued identifies those observations for which no
range consistent with the element partition is possible. If no range is possible, then we can
eliminate the observation from further consideration and form no hypotheses with it. For each
measured line of sight that is not eliminated in this manner for the element partition of interest,
the set-intersection of the intervals defined by the range inequalities becomes the hypothesis
region from which we sample values of the range.

RESTRICTIONS IMPLIED BY THE SET OF ORBITAL PLANES

The above conditions are bounds on the possible values of range, which can be computed for
each single observation. The fact that only single observations are involved is what allows us to
find explicit bounds for each of the ranges before we form any range hypotheses. However,
additional restrictions on the allowable values of range can be deduced from relations that involve
both of the ranges presented for a solution to Lambert’s problem. Although the nonlinearities in
these relations prevent us from getting explicit inequalities, nevertheless we can formulate
additional conditions that p; and p, must satisfy. Checking these extra conditions for each range
pair may keep us from having to produce some unnecessary and relatively expensive Lambert
solutions.

Using the vector triangle relation r; = R; + p;u; for each of the two lines of sight, compute
the unit vector n normal to the candidate orbital plane:

n=s(r Xr)/|lr Xl (8)

Here the quantity s is a signum function: s = +1 for “short-way” trajectories and s = —1 for
“long-way” trajectories. In general, we do not know a priori the sign for s and both cases will
need to be considered. With the sign chosen, the inclination is given unambiguously by

cosI =n-k )
Hence we require that

coslyax < n-k < coslyn (10)

In the case of low-inclination intervals, it may be better to work in terms of sine inclination:

sinfyyy < V1 —(Mm-K)? < sinlyax (11)

In a similar way, we use the unit nodal vector to obtain conditions that the range pair must
satisfy if the candidate orbit is to lie within a specified interval of right ascension of the ascending
node, [Qvin,Qmax] - In the Earth-centered inertial frame, we have



(kxn)/|k x n|| = (cos Q,sinQ,0)T (12)

so that, following standard logic for quadrant resolution, we require

Qvin < tan™1(sin Q/cos Q) < Qumax (13)

Of course, for important special cases like near-GEO orbits, it may be preferable to define
element partitions in terms of nonsingular elements such as p £ sin(I/2)cosQ and gq =
sin(1/2) sin Q . No special difficulty attaches to working in terms of these or any other elements
related to the orbit plane.

RESTRICTIONS IMPLIED BY LAMBERT’S THEOREM

We can also use three special solutions of Lambert's problem to restrict the ranges. The
eccentricity of the orbit of least possible eccentricity that goes through a given pair of position
vectors can be computed solely in terms of those position vectors. Call it e :

0<eo = |(llrll = lleIDI /Nl = w1 < 1 (14)

Likewise, the semimajor axis of the orbit of least possible semimajor axis that goes through the
pair of positions can be computed solely in terms of the position vectors. Call it aq :

4ag = |Iry[| + llrzll + [lrz — 1yl (15)

If ap > apmax or eg > emax » then reject the range hypothesis pair without solving Lambert's
problem, because the geometry is guaranteed to produce a larger semimajor axis or eccentricity
than we have specified.

Next, Euler’s Theorem, a special case of Lambert’s Theorem, expresses the time of flight Atp
between given position vectors on a parabolic (zero-energy) orbit:

Mo =3 Ja3/u—s 7 (10

Here again the quantity s is a signum function: s = +1 for “short-way” trajectories and s = —1
for “long-way” trajectories. The parameter A is defined in terms of the position vectors:
2 _ el + el = i, — ]

0<% = <1
lIra |l + NIzl + ey = ry ]

(17)

Because, for given position vectors, the time of flight in Lambert’s problem is a monotonic
decreasing function of the orbital energy, elliptic (negative-energy) orbits will always have a time
of flight longer than the parabolic time, and hyperbolic (positive-energy) orbits will always have
a time of flight shorter than the parabolic time. In our case, we can require that our observation
pairs and range hypotheses always produce elliptic orbits:

t, —t; > Atp (18)

Finally, the solution of Lambert’s problem for elliptic orbits requires us to specify the number
of complete orbital revolutions, Nggy , between the initial and final times. We cannot have an
arbitrarily large number of revolutions in the given time of flight because the period of the orbit
of minimum possible period T, is fixed by the geometry of the problem:

Ty = 2m /ag/y (19)



Accounting for the fact that some fraction of a revolution must remain after Nggy complete
revolutions on the solution orbit, including possibly zero complete revolutions, the time of flight
and number of revolutions must satisfy the inequality

where T is the actual period. Without solving Lambert’s problem, we do not know T . However,
it is always true that the period is at equal to or greater than T, . Hence the time of flight must

also satisfy the inequality
/ 21)
t, —t; = NpeyTo = 2nNggy | a5 /1

Because of the unknown difference between T and T , it is possible that the number of complete
revolutions allowed by Eq. (21) is larger than the true maximum number of revolutions allowed
in solutions of Lambert’s problem.

If any range-pair hypothesis (p; , p;) does not satisfy Egs. (8) and following, then that pair of
values can be eliminated from further consideration without solving Lambert’s problem. Note
that it is the pair of range values that is eliminated; either range value by itself may still lead to an
acceptable hypothesis in combination with some other range value.

BOUNDS ON RANGE AND RANGE RATE IMPLIED BY SIMULTANEOUS ANGLES
AND ANGLE RATES

In case the observations include, or allow us to derive, angle rates, we can deduce additional
bounds on the possible values of range. Like the bounds derived above from perigee and apogee
distances, these extra bounds will apply to single observations, where we now understand an
observation to consist of the values (R,R,u,ﬁ) at a known time. Differentiating the vector
triangle relation r = R + pu, we get the orbital velocity:

=R+ pu+pu (22)

The use of angle rate, when it is available, is especially important. If the observation includes
simultaneous angles and angle rates, a complete orbit hypothesis can be formed for each
observation without any iterative solutions, merely by choosing a value of range and a value of
range rate. This is the approach outlined by DeMars et al.*’ As in the angles-only case, the track-
initiation problem is parallel with respect to element partitions. If we can provide bounds on
range and range rate for each element partition, then we can reduce the number of orbit
hypotheses needed for each partition simply by making the partitions smaller and using more
processors to cover the whole element space. Bounds depending on angle rate will complement
the range bounds already available from the angles-only case, and can be expected to further
restrict the set of possible range hypotheses.

Most importantly, with accurate angle rate the track initiation job scales linearly with the
number of observations rather than the square or cube of the number of observations. The
problem also scales linearly in the number of range hypotheses and in the number of range rate
hypotheses. One could hardly expect to do any better than this in solving a large track-initiation
problem using optical data. Of course, nothing prevents us from using the improved bounds on
range, and possibly range rate, to improve the efficiency of a Lambert-based approach. This
choice may depend on whether the angle rates are accurate enough to represent the orbital state
directly, or whether they should be used merely to provide extra bounds on the range.



We require the velocity magnitude to lie between the minimum possible apogee speed and the
maximum possible perigee speed:

u (1 — €MAX
1+ eMAX

) < e < () (23)

amax amin \1 — emax

We are looking for the region in the (p, p) plane implied by these inequalities. We define this
region by the set-intersection of the intervals of range and range rate corresponding to each of the
two inequalities. The quadratic form for velocity-squared, has no terms containing both range and
range rate.

IEI?=R-R+2pR-u+2pR-u+p%+p?u-u (24)

Consequently, it is a simple matter to solve the inequalities for range in terms of range rate or for
range rate in terms of range. Specifically, for each of the two cases, perigee and apogee, we can
derive two equivalent sets of formulae.

First, solve the inequality in question for range rate in terms of range. The condition for
having real values for range rate will involve a quadratic inequality in range. Solve this subsidiary
inequality explicitly for range to find the interval of range over which real values for range rate
occur. The requirement that range be non-negative further restricts the possible interval of range.
Then, for each value of range in this interval, we obtain a corresponding pair of values of range
rate. This pair defines the allowable interval of range rate at that value of range.

Second, solve the original inequality in question for range in terms of range rate. The
condition for having real values for the range will involve a quadratic inequality in range rate.
Solve this subsidiary inequality explicitly for range rate to find the interval of range rate over
which real values for range occur. Then, for each value of range rate in this interval, we obtain a
corresponding pair of values of range. This pair defines the interval of range at that value of range
rate. The requirement that range be non-negative further restricts the allowable interval of range.

In either case, the level curves of the function (24) are ellipses in the (p, p) plane. The curves
are approximately concentric with respect to a point defined by the observation. The set-
intersection of the intervals defined by the collection of inequalities for range and range rate lies
between two ellipses and defines the region in the (p,p) plane from which we must sample
hypothetical values of range and range rate.

ALGORITHM SUMMARY

For each range hypothesis {pi,m ,m=12,3, } associated with each line of sight vector u;,
one will need to test for all 7 and j # i, where t; > t;. Table 1 provides the summary algorithm.

Table 1. Acceptance algorithm for orbit hypotheses

Step Acceptance Criteria for all i, j # i, m

1 I, = R; + pimu;
[amin (1 — emax)]* < lInll* < [amax(1 + emax)]?

2 I = Rj + PjmW;, tj > t;
n=s(rxg)/|nxg]s=x+1
cosyax < n-K < coslyy




3 (kxn)/|k x n|| = (cosQ,sinQ,0)T
Qmn < tan™(sin Q/cos Q) < Qyax

4 eo = |(lIrell = [l DI / [l — x|
4ao = IIrgll + [|rs | + [l — x|
Ao < aAMAX and €o < eMAX

5 2 Imll + || = [l — x|
Irill + x| + [l =i

ti—t >§ ’ag/,u(l—sf),s =+1
6 3
tj — t; = 2mNggy_|ay/ 1t

7 ;= R; + piml; + pim W
u (11— euax ) U (1+euax
( ) < il < ——( )
amax \1 + emax amin \1 — emax
NUMERICAL EXAMPLES

The results of the previous sections can be illustrated by a couple of simple examples. In this
section we focus on the case of simultaneous observation of angles and angle rates since the use
of both of these data types offers an opportunity for reduction in complexity of the problem
compared to using angle data alone. In the following examples, we assume Keplerian motion with
error-free measurements of angles and angle rates.

The first example assumes a station located at the origin. Therefore, the line-of-sight to the
space object will be in the same direction as its position vector. Table 2 lists the relevant position,
velocity and orbit quantities of the system. The element partitions used for semimajor axis and
eccentricity are listed in Table 3.



Table 2. Orbital and Observational Data for Example 1

Quantity Value

R,R [0, 0, 0] km, km/sec

r [2624, -10603, 5247] km

[3.673, -1.272, -4.408] km/sec
12118 km
0 km/sec
12756 km
0.05

o L O T -

Table 3. Element Partition for Example 1

Element Partition (min, max)
a (11756, 13756) km
e (0.03, 0.09)

The maximum perigee velocity and minimum apogee velocity inequalities produce regions in
the range-range rate plane which satisfy the selected partition of semimajor axis and eccentricity
for the given angle and angle rate observation. For Example 1, these two regions are shown in
Figure 1. Note that the perigee condition is satisfied within an elliptical region whereas the
apogee condition is satisfied outside a similar region. If a given observation were to form a pair of
regions which had no overlap, then that observation would not lie within the selected element
partition and could be eliminated from consideration.

The set intersection of these two regions forms the range-range rate hypothesis set for the
given observation and is shown in Figure 2. Note that ranges are restricted to positive values but
range rate can be negative. The actual range and range rate for this observation are shown with
the symbol “%” that lies within the hypothesis set as expected since the selected element partition
contains the actual semimajor axis and eccentricity. Shown in red in Figure 2 is the exact
admissible region for the given element partition. This region contains those range-range rate
pairs which produce orbit solutions lying within the element partition. This region is typically
smaller than the full hypothesis set. Part of the reason is that the latter set was derived without
enforcing the ey boundary of the partition, since epy does not affect the range and range rate

Regions Implied by Perigee and Apogee Speed Limits
10

Range Rate (km/s)

5000 10000 15000
Range (km)

Figure 1. Overlapping range-range rate allowable regions for Example 1.



Net Hypothesis Region for Angles and Angle Rates

8 .
Hypothesis
6 *  Admissible [
X Actual
— 4 .
o
£ 2| :
1]
g o -
(1]
-2t 1
&
41 ,
-6 4

2000 3000 4000 5000

Range (km)

0 1000

Figure 2. Range-range rate hypothesis set and admissible region for Example 1.

bounds offered in this paper. The admissible region shown in Figure 3 does explicitly reflect the
emin constraint. If eyy is made large enough, the admissible region may break into disjoint sets,
although the whole admissible region is always contained within our hypothesis set.

Finally, Figure 4 shows the same hypothesis set and admissible regions as in Figure 2, along
with the range bounds implied by the minimum-perigee and maximum-apogee inequalities based
on angle data only. In this particular case, the combination of the angles-only range bounds with
the range-range rate bounds derived from angle-angle rates produces a fairly small hypothesis set
for the given observation.

The position, velocity, observation, and orbit quantities for the second example are listed in
Table 4, and the element partition is listed in Table 5. Here the ground station is on the surface of
the Earth and has a non-zero velocity. The maximum perigee velocity and minimum apogee
velocity hypothesis regions are shown in Figure 5 and the net hypothesis set is shown in Figure 6,
along with the admissible region and actual range-range rate values. As before, the hypothesis
region is shown along with the angle implied range bounds in Figure 7.

Admissible Region for emin=0.03

4 .
Hypothesis

3 *  Admissible [l

9 X Actual

)

£ 1

o

S0

S-1

©

X , |
3 J
43 1.15 12 125 13

Range (km) x 10"

Figure 3. Admissible region with emin = 0.03 for Example 1.
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Net Hypothesis Region for Angles and Angle Rates
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Figure 4. Range-range rate hypothesis set with angles-only range bounds for Example 1.
Table 4. Orbital and Observational Data for Example 2

Quantity Value

[4092, 2690, 4076] km
[-0.196, 0.298, 0] km/sec
[8102, 2576, 5271] km
[-2.683, 5.383, 2.786] km/sec
4185 km

-1.724 km/sec

11149 km

0.145

o Lo T == R

Table S. Element Partition for Example 2

Element Partition (min, max)
a (11049, 11249) km
e (0, 0.1555)

Regions Implied by Perigee and Apogee Speed Limits
0

o Apogee
Perigee

1

(&)

Range Rate (km/s)
(]

-10

00
Range (km)

Figure 5. Overlapping range-range rate hypothesis regions for Example 2.
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Figure 6. Range-range rate hypothesis set and admissible region for Example 2.

Net Hypothesis Region for Angles and Angle Rates
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Figure 7. Range-range rate hypothesis region along with angles-only range bounds for
Example 2.

SUMMARY AND CONCLUSION

Our results show that the possible values of range and range rate can be limited a priori for
each line-of-sight observation to finite intervals corresponding to a specified partition of the
element space. The endpoints of the intervals are given explicitly in terms of the angle-based
observations, station position and station velocity, and can be computed independently for each
observation. In the angles-only case, additional conditions based on special solutions of
Lambert’s problem, which must be satisfied by range values for pairs of observations, can be
used to further reduce the number of Lambert solutions needed for the initial orbit determinations.
We also describe explicit conditions identifying when a given observation does not correspond to
any possible orbit within the specified element-space partition. Such observations can be
discarded before any data association hypotheses or orbit solutions are produced.
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The range and range rate bounds described in this paper allow a convenient parallelization of
the task of computing initial orbits in large space surveillance tracking scenarios, which is the
phase of the tracking job that involves most of the computational complexity. Because the bounds
are conservative to some extent and not exact, some values of range and range rate that lie within
the bounds given here will lead to candidate orbits that lie outside the specified partition of the
element space. This fact leads to some inefficiency in the parallelization of the initial orbit
hypotheses over the whole element space. Essentially, nearly duplicated candidate orbits may be
generated near the boundaries of the specified partitions and would therefore have to be identified
and merged later in the tracking process. Although the detection and merging of duplicate tracks
must always be done in any multiple-hypothesis tracking implementation, the inefficiency of our
range and range rate bounds necessarily increases the size of that task. The actual cost of this
inefficiency in particular problems will depend on the observation sets, the element partitions of
interest and the range / range-rate sampling strategy, and may need to be studied if the scenario is
computationally stressing. On the other hand, all the orbits within an element-space partition
correspond to values of range and range rate that do lie within the bounds given here, so that no
candidate orbits will be missed merely through this choice of bounds.
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