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PARALLEL ALGORITHM FOR TRACK INITIATION FOR OPTICAL 
SPACE SURVEILLANCE 

Paul W. Schumacher, Jr.,* Matthew P. Wilkins,† and Christopher W. T. Roscoe‡ 

We propose a type of admissible-region analysis for track initiation in multi-
satellite problems when angles are the primary observable. For a specified 
rectangular partition in the space of orbital elements, we present explicit upper 
and lower bounds, and other constraints, for the values of range and range rate 
that will lead to initial orbit hypotheses (data association hypotheses) associated 
with that partition. These bounds allow us to generate candidate orbits in an 
embarrassingly parallel fashion because each element-space partition can be 
handled independently of the others. Measured or derived angle rates provide 
additional bounds on range and range rate, also permitting the same 
parallelization. 

INTRODUCTION 

We begin with the angles-only case, in which angle rate values are not available or are too 
inaccurate for reliable use. Assume that we have a pair of line-of-sight unit vectors  𝐮! and  𝐮" , 
measured at time 𝑡! at station position 𝐑! and time 𝑡" at station position 𝐑", respectively. Assume 
without loss of generality that   𝑡" > 𝑡! . We want to test the hypothesis that these two 
observations are associated with the same space object. To this end, we attach a set of 
hypothetical range values, %𝜌!,$	, 𝑚 = 1,2, … - and %𝜌",&	, 𝑛 = 1,2, … - respectively, to each of 
these measured unit vectors and then generate candidate orbits by solving Lambert’s problem for 
each of the pair-wise combinations of hypothetical orbital position vectors 𝐫!,$ = 𝐑! + 𝜌!,$	𝐮! 
and 𝐫",& = 𝐑" + 𝜌",&	𝐮" . In principle, we can consider all possible pairs of observations and solve 
the family of Lambert problems for each pair. Then each hypothetical orbit from the solution of 
Lambert’s problem is a data association hypothesis that must be either confirmed or eliminated 
through comparisons with other observational data. Given enough range hypotheses for each 
observed line of sight, we are guaranteed to generate a viable candidate orbit for every object that 
has been observed at two or more distinct times. However, the Cartesian product of the set of 
range values for each observed line of sight with the sets of range values from every other line of 
sight implies a possibly prohibitive number of Lambert solutions to generate and check. The 
computational complexity for generating hypothetical orbits on this approach is quadratic in the 
number of observed lines of sight and also quadratic in the number of range hypotheses that we 
attach to the observations. 
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How should we limit the number of range hypotheses to make the total number of candidate 
orbits manageable while also generating candidates that are likely to correspond to real orbits of 
interest? For the purposes of this discussion, let us seek to generate hypotheses for orbits that lie 
only in a bounded region of semimajor axis  𝑎 , eccentricity  𝑒 , inclination 𝐼 and right ascension 
of the ascending node Ω , namely, within a partition of the element space specified by the 
intervals  [𝑎'()	, 𝑎'*+] , [𝑒'()	, 𝑒'*+] , [𝐼'()	, 𝐼'*+] and [Ω'()	, Ω'*+] . Then, to the extent 
that we can restrict the generation of hypothetical orbits to a specified partition of the space of 
orbital elements, we have parallelized the task of building a catalog of objects detected within that 
partition. The reason is that each partition can be handled independently. In the approach outlined 
here, all the observations would have to be considered for each partition of the space of orbit 
elements. However, by constructing upper and lower bounds on range for each measured line of 
sight for each partition of the element space, we limit the number of range hypotheses that have to 
be considered for each partition. This approach allows us to consider a manageable number of 
range hypotheses for each partition, simply by making the partitions small enough and using 
more processors to cover the whole element space. 

We seek explicit bounds on range and possibly range rate that can be applied for each 
individual angle-based observation, or at most to pairs of angle-based observations. Even with the 
further restriction that hypothetical orbits be elliptical and Keplerian (which we accept) and even 
allowing the possibility that the observation may include angle rate values, it may not be obvious 
that efficient bounds having these properties can be obtained. Exact bounds would have to be 
based on some admissible-region analysis of the type developed by Milani,1 Tommei,2 Maruskin,3 
Fujimoto4 and others.5,6 For example, denoting the gravitational parameter by  𝜇 , we write the 
first integrals of Keplerian motion as 

 energy:				𝐸 = 	 (𝐫̇ ∙ 𝐫̇) 2⁄ − 𝜇 ‖𝐫‖⁄  (1) 
 angular	momentum:									𝐡 = 𝐫 × 𝐫̇ (2) 
 Laplace	vector:							𝜇𝐞 = 𝐫̇ × (𝐫 × 𝐫̇) − 𝜇𝐫 ‖𝐫‖⁄  (3) 

Given the vector triangle relation 𝐫 = 𝐑 + 𝜌𝐮 and its time derivative for each observation, we can 
define admissible regions in the (𝜌, 𝜌̇)  plane for each partition in the space of elements by means 
of inequalities such as 

 −𝜇 (2𝑎'())⁄ ≤ 𝐸 ≤ −𝜇 (2𝑎'*+)⁄  (4) 
 cos	𝐼'*+ ≤ (𝐡 ‖𝐡‖⁄ ) ∙ 𝐤 ≤ cos	𝐼'() (5) 
 𝑒'() ≤ ‖𝐞‖ ≤ 𝑒'*+ (6) 

Here 𝐤 is the north polar unit vector in the Earth-centered inertial frame. For each observation, 
the values of range and range rate that satisfy these inequalities will result in orbits that lie only 
within the given partition of the space of elements. DeMars and Jah7 have shown what the 
admissible regions look like for partitions of semimajor axis and eccentricity by a numerical 
treatment of inequalities equivalent to (4)–(6). Maruskin et al.3 have shown how the admissible 
regions evolve in time and how the overlap of the admissible regions for different observations 
can help solve the data association problem. Tommei5 and Farnocchia6 have also addressed the 
data association problem in terms of admissible regions. However, even though Eqs. (1)–(6) can 
be reduced to polynomial forms in range and range rate, each relation is coupled in both variables 
and the polynomial degree is high, preventing us from obtaining explicit expressions for range 
and range rate in terms of the given data. Moreover, the usual admissible-region analysis leads 
nowhere if angle rates are not available. For example, the track-initiation method of DeMars et 
al.8,9 involving multiple hypotheses on range and range rate, requires both angle and angle rate 
values. 
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Our emphasis on generating candidate orbits with a Lambert-based approach in the angles-
only case may require some explanation. Certainly, the bounds on range that we present here 
could be used in a variety of ways with other angles-based initial orbit determination methods. 
All the traditional methods of angles-only orbit determination, plus the modern methods of 
Gooding,10 Mortari and Karimi,11 and others, rely on solving for the range by either a root-finding 
method or an optimization method. Such algorithms can always be made to work more reliably 
when rigorous upper and lower bounds on the unknown quantity are available. However, one 
encounters at least three difficulties in trying to apply direct angles-only methods to a large, 
multiple-target catalog-building scenario. 

First, although the range bounds presented here allow one to accept or reject candidate 
solutions based on range, for methods like Gooding’s the range estimation is tantamount to the 
complete solution. Therefore, with a direct angles-only method one still has to compute the 
complete orbit solution in terms of the observations in order to find out if the range estimate 
satisfies the bounds. In our proposed Lambert-based approach, the range bounds allow us to avoid 
most of the potential computation for the candidate orbits. 

Second, the direct angles-only methods do not scale to large problems as well as a Lambert-
based method does. Given 𝑁 observations of line of sight, the computational load of Lambert-
based methods is proportional to 𝑁,, because two observations per data association hypothesis 
are needed. The “constant” of proportionality is itself quadratic in the number of range 
hypotheses that must be considered for each line of sight. However, as noted above, the latter 
number can be driven down to manageable size in each partition of the element space by making 
the partitions small. With traditional methods of angles-only initial orbit determination, one faces 
a computational load that is proportional to at least 𝑁-, because at least 3 observations must be 
associated together to compute the range and hence the candidate orbit. The methods developed 
by Mortari and Karimi11 are more robust than traditional methods, but these also require at least 3 
observations per association hypothesis. In fact, the approach of Mortari and Karimi works better 
with more observations per association hypothesis, but then one faces a computational load that 
scales like 𝑁., 𝑁/, or even higher. 

Third, a Lambert-based method, ideally implemented, will produce a candidate orbit for every 
object that has been observed at least twice. In comparison, a direct angles-based method, such as 
Gooding’s, will produce candidate orbits only for those real objects that have been observed at 
least 3 times. An 𝑁. method will produce candidate orbits only for those real objects that have 
been observed at least 4 times, and so on. Hence, the Lambert-based method may do a more 
complete job of generating viable candidate orbits from real datasets, while scaling more 
favorably than the direct angles-based methods for large numbers of observations. 

In the present analysis, we take a geometric and kinematic approach that leads to explicit 
upper and lower bounds on the possible values of range for each observation, given only angle 
data at discrete times. In fact, we describe several inequalities that must be satisfied 
simultaneously, and we can take the most restrictive superposition of the different bounds as our 
working result. In case angle rates are available, we can obtain explicit upper and lower bounds 
on range rate, as well as additional bounds on range. It may happen that, for a given observation, 
there are no values of the range or range rate that lead to orbits within the given element-space 
partition, so that the observation can be eliminated from further consideration. We describe 
explicit conditions for the existence of possible values of range and range rate, in terms of the 
observation itself. 
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BOUNDS ON RANGE IMPLIED BY ANGLES 

Here we present bounds on range that must hold for each observed line of sight. Assuming 
that all orbits of interest are elliptical, require that the orbital radii lie between the maximum 
specified apogee and the minimum specified perigee: 

 [𝑎'()	(1 − 𝑒'*+)], ≤ ‖𝐫‖, ≤ [𝑎'*+(1 + 𝑒'*+)], (7) 

The values of range that correspond to these limits on orbital radius can be found explicitly by 
inserting the vector triangle relationship  𝐫 = 𝐑 + 𝜌𝐮 . Considering the perigee and apogee cases 
separately, we arrive at a set of quadratic inequalities that restrict the possible values of range to 
finite intervals. It is easy to isolate the range in these inequalities to produce explicit expressions 
for the allowable intervals. The requirement that range be non-negative further reduces these 
intervals. The requirement that range be real-valued identifies those observations for which no 
range consistent with the element partition is possible. If no range is possible, then we can 
eliminate the observation from further consideration and form no hypotheses with it. For each 
measured line of sight that is not eliminated in this manner for the element partition of interest, 
the set-intersection of the intervals defined by the range inequalities becomes the hypothesis 
region from which we sample values of the range. 

RESTRICTIONS IMPLIED BY THE SET OF ORBITAL PLANES 

The above conditions are bounds on the possible values of range, which can be computed for 
each single observation. The fact that only single observations are involved is what allows us to 
find explicit bounds for each of the ranges before we form any range hypotheses. However, 
additional restrictions on the allowable values of range can be deduced from relations that involve 
both of the ranges presented for a solution to Lambert’s problem. Although the nonlinearities in 
these relations prevent us from getting explicit inequalities, nevertheless we can formulate 
additional conditions that 𝜌0 and 𝜌, must satisfy. Checking these extra conditions for each range 
pair may keep us from having to produce some unnecessary and relatively expensive Lambert 
solutions. 

Using the vector triangle relation 𝐫! = 𝐑! + 𝜌!u! for each of the two lines of sight, compute 
the unit vector 𝐧 normal to the candidate orbital plane: 

 𝐧 = 𝑠 (𝐫0 × 𝐫,) ‖𝐫0 × 𝐫,‖⁄  (8) 

Here the quantity 𝑠 is a signum function: 𝑠 = 	+1 for “short-way” trajectories and 𝑠 = 	−1 for 
“long-way” trajectories. In general, we do not know a priori the sign for s and both cases will 
need to be considered. With the sign chosen, the inclination is given unambiguously by 

 cos 𝐼 = 𝐧 ∙ 𝐤 (9) 

Hence we require that  

 cos 𝐼'*+ 	≤ 	𝐧 ∙ 𝐤	 ≤ 	 cos 𝐼'() (10) 

In the case of low-inclination intervals, it may be better to work in terms of sine inclination: 

 sin 𝐼'() 	≤ 	[1 − (𝐧 ∙ 𝐤),	 	≤ 	sin 𝐼'*+ (11) 

In a similar way, we use the unit nodal vector to obtain conditions that the range pair must 
satisfy if the candidate orbit is to lie within a specified interval of right ascension of the ascending 
node,  [Ω'()	, Ω'*+] . In the Earth-centered inertial frame, we have 
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 (𝐤 × 𝐧) ‖𝐤 × 𝐧‖⁄ = (cosΩ , sinΩ , 0)1 (12) 

so that, following standard logic for quadrant resolution, we require 

 Ω'() ≤ tan20(sinΩ cosΩ⁄ ) ≤ Ω'*+ (13) 

Of course, for important special cases like near-GEO orbits, it may be preferable to define 
element partitions in terms of nonsingular elements such as 𝑝 ≜ sin(𝐼 2⁄ ) cosΩ and  𝑞 ≜
sin(𝐼 2⁄ ) sinΩ . No special difficulty attaches to working in terms of these or any other elements 
related to the orbit plane. 

RESTRICTIONS IMPLIED BY LAMBERT’S THEOREM 

We can also use three special solutions of Lambert's problem to restrict the ranges. The 
eccentricity of the orbit of least possible eccentricity that goes through a given pair of position 
vectors can be computed solely in terms of those position vectors. Call it  𝑒3 :  

 0 ≤ 𝑒3 = |(‖𝐫0‖ − ‖𝐫,‖)|	 	‖𝐫, − 𝐫0‖⁄ ≤ 1 (14) 

Likewise, the semimajor axis of the orbit of least possible semimajor axis that goes through the 
pair of positions can be computed solely in terms of the position vectors. Call it  𝑎3 :  

 4𝑎3 = ‖𝐫0‖ + ‖𝐫,‖ + ‖𝐫, − 𝐫0‖ (15) 

If  𝑎3 > 𝑎'*+ or 𝑒3 > 𝑒'*+ , then reject the range hypothesis pair without solving Lambert's 
problem, because the geometry is guaranteed to produce a larger semimajor axis or eccentricity 
than we have specified. 

Next, Euler’s Theorem, a special case of Lambert’s Theorem, expresses the time of flight ∆𝑡4 
between given position vectors on a parabolic (zero-energy) orbit: 

 
∆𝑡4 =

4
3
d𝑎3- 𝜇⁄ (1 − 𝑠	𝜆-) 

(16) 

Here again the quantity 𝑠 is a signum function: 𝑠 = 	+1 for “short-way” trajectories and 𝑠 = 	−1 
for “long-way” trajectories. The parameter 𝜆 is defined in terms of the position vectors: 

 
0 ≤ 𝜆, =

‖𝐫0‖ + ‖𝐫,‖ − ‖𝐫, − 𝐫0‖
‖𝐫0‖ + ‖𝐫,‖ + ‖𝐫, − 𝐫0‖

≤ 1 
(17) 

Because, for given position vectors, the time of flight in Lambert’s problem is a monotonic 
decreasing function of the orbital energy, elliptic (negative-energy) orbits will always have a time 
of flight longer than the parabolic time, and hyperbolic (positive-energy) orbits will always have 
a time of flight shorter than the parabolic time. In our case, we can require that our observation 
pairs and range hypotheses always produce elliptic orbits: 

 𝑡, − 𝑡0 > ∆𝑡4 (18) 

Finally, the solution of Lambert’s problem for elliptic orbits requires us to specify the number 
of complete orbital revolutions, 𝑁567 , between the initial and final times. We cannot have an 
arbitrarily large number of revolutions in the given time of flight because the period of the orbit 
of minimum possible period 𝑇3  is fixed by the geometry of the problem: 

 
𝑇3 = 2𝜋d𝑎3- 𝜇⁄  

(19) 
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Accounting for the fact that some fraction of a revolution must remain after 𝑁567 complete 
revolutions on the solution orbit, including possibly zero complete revolutions, the time of flight 
and number of revolutions must satisfy the inequality 

 𝑡, − 𝑡0 ≥ 𝑁567𝑇 (20) 

where 𝑇 is the actual period. Without solving Lambert’s problem, we do not know  𝑇 . However, 
it is always true that the period is at equal to or greater than  𝑇3 . Hence the time of flight must 
also satisfy the inequality 

 
𝑡, − 𝑡0 ≥ 𝑁567𝑇3 = 2𝜋𝑁567d𝑎3- 𝜇⁄  

(21) 

Because of the unknown difference between 𝑇 and  𝑇3 , it is possible that the number of complete 
revolutions allowed by Eq. (21) is larger than the true maximum number of revolutions allowed 
in solutions of Lambert’s problem. 

If any range-pair hypothesis (𝜌0	, 𝜌,) does not satisfy Eqs. (8) and following, then that pair of 
values can be eliminated from further consideration without solving Lambert’s problem. Note 
that it is the pair of range values that is eliminated; either range value by itself may still lead to an 
acceptable hypothesis in combination with some other range value. 

BOUNDS ON RANGE AND RANGE RATE IMPLIED BY SIMULTANEOUS ANGLES 
AND ANGLE RATES 

In case the observations include, or allow us to derive, angle rates, we can deduce additional 
bounds on the possible values of range. Like the bounds derived above from perigee and apogee 
distances, these extra bounds will apply to single observations, where we now understand an 
observation to consist of the values i𝐑	, 𝐑̇	, 𝐮	, 𝐮̇j at a known time. Differentiating the vector 
triangle relation  𝐫 = 𝐑 + 𝜌𝐮 , we get the orbital velocity: 

 𝐫̇ = 𝐑̇ + 𝜌̇𝐮 + 𝜌𝐮̇ (22) 

The use of angle rate, when it is available, is especially important. If the observation includes 
simultaneous angles and angle rates, a complete orbit hypothesis can be formed for each 
observation without any iterative solutions, merely by choosing a value of range and a value of 
range rate. This is the approach outlined by DeMars et al.8,9 As in the angles-only case, the track-
initiation problem is parallel with respect to element partitions. If we can provide bounds on 
range and range rate for each element partition, then we can reduce the number of orbit 
hypotheses needed for each partition simply by making the partitions smaller and using more 
processors to cover the whole element space. Bounds depending on angle rate will complement 
the range bounds already available from the angles-only case, and can be expected to further 
restrict the set of possible range hypotheses.  

Most importantly, with accurate angle rate the track initiation job scales linearly with the 
number of observations rather than the square or cube of the number of observations. The 
problem also scales linearly in the number of range hypotheses and in the number of range rate 
hypotheses. One could hardly expect to do any better than this in solving a large track-initiation 
problem using optical data. Of course, nothing prevents us from using the improved bounds on 
range, and possibly range rate, to improve the efficiency of a Lambert-based approach. This 
choice may depend on whether the angle rates are accurate enough to represent the orbital state 
directly, or whether they should be used merely to provide extra bounds on the range. 
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We require the velocity magnitude to lie between the minimum possible apogee speed and the 
maximum possible perigee speed: 

 𝜇
𝑎'*+

k
1 − 𝑒'*+
1 + 𝑒'*+

l 	≤ 	‖𝐫̇‖, 	≤
𝜇

𝑎'()
k
1 + 𝑒'*+
1 − 𝑒'*+

l (23) 

We are looking for the region in the (𝜌, 𝜌̇) plane implied by these inequalities. We define this 
region by the set-intersection of the intervals of range and range rate corresponding to each of the 
two inequalities. The quadratic form for velocity-squared, has no terms containing both range and 
range rate. 

 ‖𝐫̇‖, = 𝐑̇ ∙ 𝐑̇ + 2𝜌̇𝐑̇ ∙ 𝐮 + 2𝜌𝐑̇ ∙ 𝐮̇ + 𝜌̇, + 𝜌,	𝐮̇ ∙ 𝐮̇ (24) 

Consequently, it is a simple matter to solve the inequalities for range in terms of range rate or for 
range rate in terms of range. Specifically, for each of the two cases, perigee and apogee, we can 
derive two equivalent sets of formulae. 

First, solve the inequality in question for range rate in terms of range. The condition for 
having real values for range rate will involve a quadratic inequality in range. Solve this subsidiary 
inequality explicitly for range to find the interval of range over which real values for range rate 
occur. The requirement that range be non-negative further restricts the possible interval of range. 
Then, for each value of range in this interval, we obtain a corresponding pair of values of range 
rate. This pair defines the allowable interval of range rate at that value of range. 

Second, solve the original inequality in question for range in terms of range rate. The 
condition for having real values for the range will involve a quadratic inequality in range rate. 
Solve this subsidiary inequality explicitly for range rate to find the interval of range rate over 
which real values for range occur. Then, for each value of range rate in this interval, we obtain a 
corresponding pair of values of range. This pair defines the interval of range at that value of range 
rate. The requirement that range be non-negative further restricts the allowable interval of range. 

In either case, the level curves of the function (24) are ellipses in the (𝜌, 𝜌̇) plane. The curves 
are approximately concentric with respect to a point defined by the observation.  The set-
intersection of the intervals defined by the collection of inequalities for range and range rate lies 
between two ellipses and defines the region in the (𝜌, 𝜌̇) plane from which we must sample 
hypothetical values of range and range rate. 

ALGORITHM SUMMARY 

For each range hypothesis %𝜌!,$	, 𝑚 = 1,2,3, … - associated with each line of sight vector u!, 
one will need to test for all i and j ≠ i, where		𝑡" > 𝑡!. Table 1 provides the summary algorithm.  

Table 1. Acceptance algorithm for orbit hypotheses 

Step Acceptance Criteria for all i, j ≠ i, m 

1 𝐫! = 𝐑! + 𝜌!,$u! 
[𝑎'()	(1 − 𝑒'*+)], ≤ ‖𝐫!‖, ≤ [𝑎'*+(1 + 𝑒'*+)], 
 

2 𝐫" = 𝐑" + 𝜌",$u", 𝑡" > 𝑡! 
𝐧 = 𝑠 i𝐫! × 𝐫"j m𝐫! × 𝐫"mn , 𝑠 = ±1 
cos 𝐼'*+ 	≤ 	𝐧 ∙ 𝐤	 ≤ 	 cos 𝐼'() 
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3 (𝐤 × 𝐧) ‖𝐤 × 𝐧‖⁄ = (cosΩ , sinΩ , 0)1 
Ω'() ≤ tan20(sinΩ cosΩ⁄ ) ≤ Ω'*+ 

4 𝑒3 = pi‖𝐫!‖ − m𝐫"mjp	 	m𝐫" − 𝐫!mn  
4𝑎3 = ‖𝐫!‖ + m𝐫"m + m𝐫" − 𝐫!m 
𝑎3 < 𝑎'*+			and			𝑒3 < 𝑒'*+ 

5 
𝜆, =

‖𝐫!‖ + m𝐫"m − m𝐫" − 𝐫!m
‖𝐫!‖ + m𝐫"m + m𝐫" − 𝐫!m

 

𝑡" − 𝑡! >
.
-
d𝑎3- 𝜇⁄ (1 − 𝑠	𝜆-), 𝑠 = ±1 

6 
𝑡" − 𝑡! ≥ 2𝜋𝑁567d𝑎3- 𝜇⁄  

7 𝐫̇! = 𝐑̇! + 𝜌̇!,$𝐮! + 𝜌!,$𝐮̇! 
𝜇

𝑎'*+
k
1 − 𝑒'*+
1 + 𝑒'*+

l 	≤ 	 ‖𝐫̇!‖, ≤
𝜇

𝑎'()
k
1 + 𝑒'*+
1 − 𝑒'*+

l 

 
 

NUMERICAL EXAMPLES 

The results of the previous sections can be illustrated by a couple of simple examples. In this 
section we focus on the case of simultaneous observation of angles and angle rates since the use 
of both of these data types offers an opportunity for reduction in complexity of the problem 
compared to using angle data alone. In the following examples, we assume Keplerian motion with 
error-free measurements of angles and angle rates. 

The first example assumes a station located at the origin. Therefore, the line-of-sight to the 
space object will be in the same direction as its position vector. Table 2 lists the relevant position, 
velocity and orbit quantities of the system. The element partitions used for semimajor axis and 
eccentricity are listed in Table 3. 
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Table 2. Orbital and Observational Data for Example 1 

Quantity Value 
𝐑, 𝐑̇ [0, 0, 0] km, km/sec 
𝐫 [2624, -10603, 5247] km 
𝐫̇ [3.673, -1.272, -4.408] km/sec 
ρ 12118 km 
ρ̇ 0 km/sec 
a 12756 km 
e 0.05 

 

Table 3. Element Partition for Example 1 

 

 

 

The maximum perigee velocity and minimum apogee velocity inequalities produce regions in 
the range-range rate plane which satisfy the selected partition of semimajor axis and eccentricity 
for the given angle and angle rate observation. For Example 1, these two regions are shown in 
Figure 1. Note that the perigee condition is satisfied within an elliptical region whereas the 
apogee condition is satisfied outside a similar region. If a given observation were to form a pair of 
regions which had no overlap, then that observation would not lie within the selected element 
partition and could be eliminated from consideration. 

The set intersection of these two regions forms the range-range rate hypothesis set for the 
given observation and is shown in Figure 2. Note that ranges are restricted to positive values but 
range rate can be negative. The actual range and range rate for this observation are shown with 
the symbol “×” that lies within the hypothesis set as expected since the selected element partition 
contains the actual semimajor axis and eccentricity. Shown in red in Figure 2 is the exact 
admissible region for the given element partition. This region contains those range-range rate 
pairs which produce orbit solutions lying within the element partition. This region is typically 
smaller than the full hypothesis set. Part of the reason is that the latter set was derived without 
enforcing the 𝑒'() boundary of the partition, since 𝑒'() does not affect the range and range rate 

Element Partition (min, max) 
a (11756, 13756) km 
e (0.03, 0.09) 

Figure 1. Overlapping range-range rate allowable regions for Example 1. 
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bounds offered in this paper. The admissible region shown in Figure 3 does explicitly reflect the 
𝑒'() constraint. If 𝑒'() is made large enough, the admissible region may break into disjoint sets, 
although the whole admissible region is always contained within our hypothesis set. 

Finally, Figure 4 shows the same hypothesis set and admissible regions as in Figure 2, along 
with the range bounds implied by the minimum-perigee and maximum-apogee inequalities based 
on angle data only. In this particular case, the combination of the angles-only range bounds with 
the range-range rate bounds derived from angle-angle rates produces a fairly small hypothesis set 
for the given observation.  

The position, velocity, observation, and orbit quantities for the second example are listed in 
Table 4, and the element partition is listed in Table 5. Here the ground station is on the surface of 
the Earth and has a non-zero velocity. The maximum perigee velocity and minimum apogee 
velocity hypothesis regions are shown in Figure 5 and the net hypothesis set is shown in Figure 6, 
along with the admissible region and actual range-range rate values. As before, the hypothesis 
region is shown along with the angle implied range bounds in Figure 7. 

 

Figure 2. Range-range rate hypothesis set and admissible region for Example 1. 

Figure 3. Admissible region with emin = 0.03 for Example 1. 
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Figure 4. Range-range rate hypothesis set with angles-only range bounds for Example 1. 

Table 4. Orbital and Observational Data for Example 2 

Quantity Value 
𝐑 [4092, 2690, 4076] km 
𝐑̇ [-0.196, 0.298, 0] km/sec 
𝐫 [8102, 2576, 5271] km 
𝐫̇ [-2.683, 5.383, 2.786] km/sec 
ρ 4185 km 
ρ̇ -1.724 km/sec 
a 11149 km 
e 0.145 

Table 5. Element Partition for Example 2 

Element Partition (min, max) 
a (11049, 11249) km 
e (0, 0.1555) 

 

 

 

 

Figure 5. Overlapping range-range rate hypothesis regions for Example 2. 
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Figure 6. Range-range rate hypothesis set and admissible region for Example 2. 

 
Figure 7. Range-range rate hypothesis region along with angles-only range bounds for 

Example 2. 

SUMMARY AND CONCLUSION 

Our results show that the possible values of range and range rate can be limited a priori for 
each line-of-sight observation to finite intervals corresponding to a specified partition of the 
element space. The endpoints of the intervals are given explicitly in terms of the angle-based 
observations, station position and station velocity, and can be computed independently for each 
observation. In the angles-only case, additional conditions based on special solutions of 
Lambert’s problem, which must be satisfied by range values for pairs of observations, can be 
used to further reduce the number of Lambert solutions needed for the initial orbit determinations. 
We also describe explicit conditions identifying when a given observation does not correspond to 
any possible orbit within the specified element-space partition. Such observations can be 
discarded before any data association hypotheses or orbit solutions are produced. 
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The range and range rate bounds described in this paper allow a convenient parallelization of 
the task of computing initial orbits in large space surveillance tracking scenarios, which is the 
phase of the tracking job that involves most of the computational complexity. Because the bounds 
are conservative to some extent and not exact, some values of range and range rate that lie within 
the bounds given here will lead to candidate orbits that lie outside the specified partition of the 
element space. This fact leads to some inefficiency in the parallelization of the initial orbit 
hypotheses over the whole element space. Essentially, nearly duplicated candidate orbits may be 
generated near the boundaries of the specified partitions and would therefore have to be identified 
and merged later in the tracking process. Although the detection and merging of duplicate tracks 
must always be done in any multiple-hypothesis tracking implementation, the inefficiency of our 
range and range rate bounds necessarily increases the size of that task. The actual cost of this 
inefficiency in particular problems will depend on the observation sets, the element partitions of 
interest and the range / range-rate sampling strategy, and may need to be studied if the scenario is 
computationally stressing. On the other hand, all the orbits within an element-space partition 
correspond to values of range and range rate that do lie within the bounds given here, so that no 
candidate orbits will be missed merely through this choice of bounds. 
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