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ABSTRACT 

Maneuver detection is a very important task for 
maintaining the catalog of the orbital objects and space 
situational awareness. This paper mainly focuses on the 
typical maneuver scenario where space objects only 
perform tangential orbital maneuvers during a relative 
long gap. Particularly, only two classical and 
commonly applied orbital transition manners are 
considered, i.e. the twice tangential maneuvers at the 
apogee and the perigee or one tangential maneuver at 
an arbitrary time. Based on this, we preliminarily 
estimate the maneuvering mode and parameters by 
analyzing the change of semi-major axis and 
eccentricity. Furthermore, if only one tangential 
maneuver happened, we can formulate the estimation 
problem of maneuvering parameters as a non-linear 
least squares problem. To obtain a more sensible and 
accurate result, the prior knowledge is incorporated 
into the iterative solving process calculated by SOCP 
algorithm. Finally, the performance and efficiency of 
our method are validated by the theoretical analysis 
and some observations. 

1 INTRUDUCTION 

Nowadays, there are at least 20000 trackable objects in 
earth orbit and among them 1300 have the capability of 
performing orbital maneuver [1]. When the orbital 
maneuver occurs unexpectedly during the gaps, how to 
detect and reconstruct the abnormal event will directly 
affect the capability of space situational awareness. 
Particularly, the available observations collected by the 
current space surveillance systems, such as the AFSSS 
(US Air Force Space Surveillance System) [2], which 
has a long gap between the neighboring observations, 
are generally discrete in the spatial-temporal domain. 
The problem of maneuver detection during observation 
gaps brings much more difficult, in contrast with that 
commonly encountered in real-time tracking 
applications.  

Regarding the problem of maneuver detection, the 
corresponding methods are the varieties with respect to 
different modes of orbital maneuvering and detection 
metrics. Storch estimated the maneuvering parameters 
of a collocated satellite in geosynchronous orbit by 
using nonlinear least squares [3]. In [4], the energy per 
unit mass was computed to detect a space event based 

on the technique of a moving window curve fit. 
Holzinger & Scheeres presented an object correlation 
and maneuver detection method using optimal control 
performance metrics [5]. Kelecy & Jah focused on the 
detection and reconstruction of single low thrust in-
track maneuvers by using the orbit determination 
strategies based on the batch least-squares and 
extended Kalman filter (EKF) [6]. However, these 
methods are highly relevant to the presupposed 
maneuvering mode and a relative short observation 
gap.  

In this paper, to address the real observed data, we only 
consider the common maneuvering modes and 
observation scenarios in practical. For an orbital 
maneuver, minimization of fuel consumption is 
essential because the weight of a payload that can be 
carried to the desired orbit depends on this 
minimization. Therefore, choices in the modes of 
orbital maneuver are limited. The thrust imposed on 
the tangential direction is an efficient maneuvering 
mode for minimizing fuel consumption, which is 
commonly applied in the process of various orbital 
maneuvers [7]. In particular, the maneuvering positions 
are usually chosen at the apogee and perigee point [7]. 
The studies in this paper are based on all the above-
mentioned hypothetical maneuvering modes. 
Furthermore, due to the limited coverage of the 
sensors, the small and regular observation gap couldn’t 
be guaranteed, which may be from hours to many days. 
Therefore, it is more meaningful and expected that the 
performance of the proposed maneuver detection 
method will be little affected by the observation gap, 
especially the large gap. Certainly, we also hope to 
reconstruct the maneuvering parameters precisely 
when the maneuver event occurs during a small gap. 

This paper presents a novel and stepwise algorithm to 
handle these problems as follows. In section 2, the 
maneuvering modes and maneuvering parameters are 
estimated preliminarily according to the change of 
semi-major axis and eccentricity. If there is only one 
tangential maneuver during the gap from the result, we 
formulate the estimation problem of maneuvering 
parameters as a non-linear least squares problem. Thus, 
a more precise result can be obtained by solving the 
constrained non-linear least squares iterative process 
using SOCP (Second Order Cone Programming) 
algorithm in Section3. Section 4 is the simulation 



results and performance analysis. Section 5 is the 
conclusion. 

2 ESTIMATION OF MANEUVERING 
MODE 

As we know, the orbits often have the unexpectable 
changes due to undertaking the various tasks. The most 
frequent orbital maneuvers are implemented to keep 
the spacecraft at the prearranged orbit, especially the 
semi-major axis  and eccentricity  which determine 
the orbital shape. Generally, these two orbital 
parameters are controlled more rigorously than any 
other parameters, and they are usually not allowed to 
fluctuate with respect to the time. The common and 
efficient maneuvering mode is to exert an additional 
tangential velocity at a proper point or the perigee and 
apogee point [7]. However, one tangential maneuver 
can’t simultaneously adjust the semi-major axis and 
eccentricity arbitrarily, while two tangential maenuvers 
at the apogee and perigee can do that. They are both 
the common applying maneuvering modes. Therefore, 
the maneuvering mode and the corresponding 
maneuvering parameters can be estimated preliminarily 
according to the change of semi-major axis and 
eccentricity. 

2.1 One tangential maneuvering mode 

If the observed semi-major axis and eccentricities 
changed obviously at different times, the maneuver 
detection should be taken into account. Based on the 
hypothesis of one tangential maneuvering mode, we 
should reconstruct the maneuvering velocity as well as 
judge that where the maneuver occurs and whether 
only one tangential maneuver can realize this change of 
these parameters.  

According to the perturbation motional formula, a 
tangential impulse velocity exerted at an arbitrary 
point  during the orbit will simultaneously change 
the value of the semi-major axis  and eccentricity 

 as Eq. 1: 

  (1) 

Where , is the 
earth gravitational constant, is the true anomaly. 
Once the  and  are known, we can calculate the 
maneuvering parameters  and . Dividing the 
second equation by the first equation at Eq. 1, we can 
obtain that: 

  (2) 

When we want to obtain the sensible values of the 
maneuvering true anomaly  and velocity , the 
solution of Eq. 2 must satisfy: 

  (3) 

However, Eq. 3 can’t be always satisfied, i.e. only one 
tangential maneuver can’t simultaneously adjust the 
semi-major axis and eccentricity arbitrarily. Therefore, 
multiple maneuvers should be applied, one efficient 
mode of which is that twice tangential maneuvers at 
the apogee and perigee point which could minimize the 
fuel consumption. 

2.2 Twice tangential maneuvers at the 
perigee and apogee 

Most of the orbits of space objects have small 
eccentricities and can be approximated as circle orbits. 
Thus, the item  in Eq. 1 can be omitted. Eq. 1 can be 
transformed into: 

  (4) 

Firstly, the  is used to adjust the eccentricity  at 
the perigee or the apogee, i.e.  or . 
This maneuvering velocity is denoted as . 

When , we can get . When 
, .  

After the adjusting of eccentricity , the semi-major 
axis  should be modified a value  to adapt the 
final change.  includes two parts: the first is 
original changed value ; the second is the deviation 

caused by the adjusting of . Thus, the current 
value is . Therefore, when , 

; when , 
. In addition, when the signs of  and 

 are the same, we choose ; while they are 
different, we choose . Accordingly, the value 
of  will be reduced and the fuel consumption is 
saved. 

In order to adjust the , we exert an equivalent 
tangential velocity  each once at the apogee and 
perigee respectively. In this case, the eccentricity  
will not be changed while adjusting  according to Eq. 
4. We can obtain that . Finally, 
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twice tangential maneuvers at the perigee and apogee 
can be utilized to achieve the arbitrary change of 
eccentricity  and the semi-major axis . The 
concrete formats are as follows: 

(1) When the sign of  and  are the same, 
, and the first tangential impulse 

 is exerted at , the second tangential impulse 
 is exerted at , where 

  (5) 

(2) When the sign of  and  are different, 
, and the first tangential impulse 

 is exerted at , the second tangential 
impulse  is exerted at , where 

  (6) 

Therefore, the common maneuvering modes for 
adjusting the eccentricity  and the semi-major axis  
have been introduced. When we get the observations at 
different time, the maneuvering mode and parameters 
can be reconstructed according to the value of  and 

. Then, the sensibility and availability of the results 
can be further analyzed.  

2.3 Analysis of observed data 

To verify the effectiveness of our presented maneuver 
detection method, some typical orbital observations of 
Shenzhou Spaceship are selected for maneuver 
detection. 

The observations are displayed in the form of the 
orbital period, i.e. the times of full circle where the 
space object turns around the observation station. The 
first data contains a neighbouring observation, and only 
the concerned altitude and eccentricity are plotted in 
Fig. 1. 

We take the aforementioned two maneuvering modes 
to analyze the first observed data. The results are listed 
in Tab. 1, where X denotes no solution; Mode 1 and 
Mode 2 represent the one tangential maneuvee and 
twice tangential maneuvers at the perigee and apogee, 
respectively. 

 
Figure 1. Observations at the first time 

Table 1. Analysis results of the first observations 
 Circle 1 to Circle 2 Circle 2 to Circle 16 
 Maneuver 

velocity 
(m/s) 

Maneuver 
position  
f (°) 

Maneuver 
velocity 
(m/s) 

Maneuver 
position  
f (°) 

Mode 1 X X X X 

Mode 2 -15.5 180 -17.4 0 
-15.5 0 3.9 180 

From Tab. 1, we can see that the change of observed 
orbits from circle 1 to circle 2 can be achieved by 
exerting one -15.5m/s maneuvering velocity at the 
apogee and perigee respectively, while only one 
tangential maneuver can never realize it. For the 
second maneuver from circle 2 to circle 16, it can be 
realized by exerting a -17.4m/s impulse velocity at the 
perigee and then a 3.9m/s impulse at the apogee. In 
addition, the mode 1 still has no solution. Commonly, 
it is impossible that the velocity is reduced firstly, and 
then increased immediately. The second increase of 
velocity may be induced by the observation noise. 
Thus, the second maneuver can be equivalent to one 
tangential maneuver with about -15m/s impulse 
velocity. Therefore, the preliminary analysis result can 
be derived: there may be three times continual 
maneuvers at the perigee and apogee points. In 
addition, the tangential impulse velocity exerted at 
each time is about -15m/s. 
The second observations are shown in Fig. 2. 

 
Figure 2. Observations at the second time 
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The same maneuver detection method is implemented 
to analyze the second observations. The results are 
shown in Tab. 2. 

Table 2. Analysis results of the second observations 

 Circle 2 to Circle 17 Circle 17 to Circle 18 
 Maneuver 

velocity 
(m/s) 

Maneuver 
position  
f (°) 

Maneuver 
velocity 
(m/s) 

Maneuver 
position  
f (°) 

Mode 1 -31.96 90.04 X X 

Mode 2 -15.99 0 3.30 180 
-15.96 180 3.29 0 

The two maneuvering modes are both available to 
conform with the observations from circle 2 to circle 
17. The maneuvering velocity in mode 1 is about the 
total of twice maneuvering velocities in mode 2. 
However, the thrusters should not always change the 
magnitude of impulse while concerning the stableness 
and difficulty of control and manufacture. So, the 
maneuvering velocity in mode 2 more approximates 
the analysis results of the first observations and may be 
sensible. In addition, the observations from circle 17 to 
circle 18 are inclined to suggest that no maneuver 
occurs during the gap, and the nonzero values of the 
estimated maneuvering velocity mainly results in the 
measurement error. 

The analysis results of the observations indicate that 
our estimation method of the maneuvering mode is 
efficient. It can preliminarily deduce the maneuvering 
parameters and explicate sensibly for the observations. 
A further advantage is that the algorithm is little 
affected by the observation gap which ranges from 2 
hours to 24 hours in our testing data. In addition, the 
method is straightforward. Even for the preliminary 
orbits determined based on the coarse observations, a 
robust and relative accurate result can be also obtained. 

3 PRECISE ESTIMATION OF 
MANEUVERING PARAMETERS IN ONE 
TANGENTIAL MANEUVERING MODE 

If the estimated maneuvering mode indicates that only 
one tangential impulse is exerted during the 
observation gap, we could reconstruct the maneuvering 
parameters more precisely. 

3.1 Method of parameter estimation in 
orbital maneuvering 

Let  and  denote the maneuvering time and 
velocity respectively.  and  are the pre-maneuver 
velocity vector and the post-maneuver velocity vector 
at the time , respectively. The space object 
maneuvers along the tangential direction, so we can 
derive , where ,  
denotes the -norm. ,  and ,  are the 

position vector and velocity vector of space object at 
the time  and , respectively. ， ， ，  are 

the functions of ,  and . ， ， ，

 are the functions of ,  and  [8]. 
Assuming that the observation noise is zero mean 
Gaussian white noise,  and   denote 
the observation noises at the time  and , 
respectively, where  and  are the noise 
covariance. 

Let  in this 
paper. Thus, the observed orbital elements in the 
presence of noise is denoted by 

, 

. 

The orbital maneuvering process can be represented by 
the following equation: 

(7) 

where . Here, the perturbation 

forces are not considered. 

The first equation in the maneuvering model of Eq. 7 is 

abbreviated to . 

Therefore, the parameter estimation problem can be 
treated as a non-linear least square problem in Eq. 8: 

 (8) 

where the unknown parameter vector is 
. Before the Gauss-Newton iterative 

algorithm being applied, we need compute the 
linearization form of  at the parameter 
vector : 
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  (9) 

The calculation of partial derivatives has no difficulty 
but is complicated, so we don’t give the concrete forms 
due to the limited length of paper.  

The initial value  of the parameter vector  
directly affects the convergence of the iterative 
algorithm. It is important to choose an appropriate 
initial value based on the prior information of the 
correlated orbits. In this paper, the observed values of 

,  at the time  can be taken as the initial values 
of , . Moreover, let the observed orbit  and orbit 

 propagate in the time interval . We calculate 
the intersection time  when the two orbits have the 
minimum module difference of the position vectors 
through cross propagation. Thus,  is chosen as the 
initial iterative value of , and the corresponding 
module value of the two velocity vectors’ 
difference at the intersection point is chosen as the 
initial value of maneuvering velocity . 

In order to obtain a more sensible and accurate result, 
the constraints for the unknown parameter vector  
should be applied in the iterative process. The 
constrained iterative form for solving the non-linear 
least squares problem is: 

 s.t.  

 

(10) 

where  is the upper bound of the maneuvering 
velocity,  is a 3-dimensional full-1 vector. The 
iterative process is an optimization problem, which can 
be handled by the SOCP algorithm [9]. Therefore, the 
maneuvering time  and the maneuvering velocity 

 can be estimated by multiple iterations. 

3.2 Detection performance of orbital 
maneuver 

Using Eq. 9,  and , we can easily 
obtain the Cramer-Rao Lower Bound (CRLB) of the 
estimated parameters  and . Here, two common 
gaps of the observations are used for the performance 
analysis, i.e.: one case is that the surveillance system 
observes two adjacent orbits of an object, whose time 
interval is about an orbital period (about 2 hours for 
LEO object); the other case is that the neighbouring 
ascending and descending arcs are observed, whose 
time interval is about 12 hours. In this paper, the 
simulation parameters are set as follows: the initial 
orbit element: Semi-major axis , 
Eccentricity , Inclination , Longitude of 
the ascending node , Argument of periapsis 

, Mean anomaly ; the observation 
errors are   and . Subsequently, 
we calculate the CRLBs in the simulation. For the non-
maneuvering object, the CRLB’s square root of the 
maneuvering velocity is 0.1m/s, which is similar to the 
observation error. For the maneuvering objects, the 
distribution of the CRLBs’ square root of the estimated 
maneuvering time and maneuvering velocity are shown 
in Fig. 3. 

 
(a) The CRLBs’ square root of the estimated maneuvering time 
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(b) The CRLBs’ square root of the estimated maneuvering velocity 

Figure 3. The distribution of the CRLBs’ square root of the estimated maneuvering time and velocity

Fig. 3 indicates that the estimated precision fluctuates 
with respect to the maneuvering time instead of 
changing monotonously. With the increasing 
maneuvering velocity, the parameters will be estimated 
with a higher precision. In addition, the estimation 
precision for a large gap  of the observations is 
slightly higher than that for a small one. 

Furthermore, Monte Carlo simulations are carried out 
to examine and analyze the maneuver detection 

performance and parameter estimation precision of the 
proposed algorithm. The result is compared with 
CRLB. The parameters in the simulation are the same 
with aforementioned setting. 

Firstly, we carry out the maneuver detection for the 
non-maneuver object. The cumulative probability 
distribution of the estimated maneuver velocity is 
statistically shown in Tab. 3. 

Table 3. The cumulative probability distribution of the estimated maneuvering velocity for the non-maneuvering object 

Estimated maneuvering velocity (m/s) ≤10-3 ≤10-2 ≤0.1 ≤0.3 ≤0.6 

Cumulative probability (2h) 0.4500 0.4550 0.6500 0.9450 1 

Cumulative probability (12h) 0.5050 0.5250 0.7000 0.9950 1 

Tab. 3 indicates that almost all the estimated 
maneuvering velocities are less than , which result 
from the observations error. In other words, there is 
quite a small probability that a non-maneuver object is 
identified as a maneuver one. 

Subsequently, the maneuver detection is carried out for 

the maneuver object. In this paper, when the estimation 
biases satisfy ， , we 
assume that the orbital maneuver detection is correct. 
Only the correct maneuver detection is used to evaluate 
the accuracy of the parameter estimation. The result is 
shown in Fig. 4. 

 
(a) Probability of correct maneuver detection 
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(b) Root Mean Square Error (RMSE) of the estimated maneuvering time 

 
(c) Root Mean Square Error (RMSE) of the estimated maneuvering velocity 

Figure 4. The detection performance of the proposed maneuver detection algorithm

Fig. 4 suggests that the detection performance is 
closely related with the real maneuvering time and the 
maneuvering velocity. Comparing the simulation 
results with the CRLBs, we can find that it will acquire 
a high correct detection probability where the CRLBs 
of the maneuvering time and velocity are low. When 
the maneuvering velocity exceeds 5m/s, the correct 
maneuvering detection probability can achieve 1. With 
the increasing maneuvering velocity, the estimation 
accuracy of the maneuvering time is improved. But the 
estimation accuracy of the maneuvering velocity is 
more sensitive to the real maneuvering time, which 
coincides with the trend of the CRLB. In addition, Fig. 
4 also shows that the larger gap interval of the 
observations leads to a higher estimation accuracy than 
the smaller one, but the correct detection probability is 
much lower. The reasons behind this outcome are that 
it is much more difficult to get an accurate initial 
iterative value in the case of the large gap interval than 
the small gap. The larger difference between the initial 
iterative value and the real value will result in a higher 
probability of the non-convergence and local 
convergence problem. This is a main reason why the 
larger gap of the observations makes the orbital 
maneuver detection more difficult.  

4 Conclusions 

Maneuver detection plays an important role in space 
surveillance. This paper presents a novel method for 
addressing the maneuver detection problem under the 
hypothesis that only the tangential maneuvers exist. 
We preliminarily estimate the maneuvering mode 
according to the changes of the observed semi-major 
axis and eccentricity. This method is very convenient 
to handle the practical data and will be little affected by 
the observation gap. Some typical observations are 
used to verify the robust and efficiency of our 
presented algorithm. If estimated maneuvering mode 
shows that only one tangential maneuver occurs during 
the gap, the reconstruction problem of the maneuvering 
parameters can be transformed into a non-linear least 
squares problem. To obtain a stable and precise result 
of the least squares problem, some prior constrains are 
incorporated into the iterative processes. The SOCP 
algorithm is utilized to calculate the optimal problem. 
Finally, the performance of the proposed method is 
also analyzed in detail, and extensive simulations are 
carried out to validate the effectiveness of the 
algorithm. However, the proposed algorithm is a 
general methodology, which can be also adapted and 
extended to many different situations. 
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