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ABSTRACT

Maneuver detection is a very important task for
maintaining the catalog of the orbital objects and space
situational awareness. This paper mainly focuses on the
typical maneuver scenario where space objects only
perform tangential orbital maneuvers during a relative
long gap. Particularly, only two classical and
commonly applied orbital transition manners are
considered, i.e. the twice tangential maneuvers at the
apogee and the perigee or one tangential maneuver at
an arbitrary time. Based on this, we preliminarily
estimate the maneuvering mode and parameters by
analyzing the change of semi-major axis and
eccentricity. Furthermore, if only one tangential
maneuver happened, we can formulate the estimation
problem of maneuvering parameters as a non-linear
least squares problem. To obtain a more sensible and
accurate result, the prior knowledge is incorporated
into the iterative solving process calculated by SOCP
algorithm. Finally, the performance and efficiency of
our method are validated by the theoretical analysis
and some observations.

1 INTRUDUCTION

Nowadays, there are at least 20000 trackable objects in
earth orbit and among them 1300 have the capability of
performing orbital maneuver [1]. When the orbital
maneuver occurs unexpectedly during the gaps, how to
detect and reconstruct the abnormal event will directly
affect the capability of space situational awareness.
Particularly, the available observations collected by the
current space surveillance systems, such as the AFSSS
(US Air Force Space Surveillance System) [2], which
has a long gap between the neighboring observations,
are generally discrete in the spatial-temporal domain.
The problem of maneuver detection during observation
gaps brings much more difficult, in contrast with that
commonly encountered in real-time tracking
applications.

Regarding the problem of maneuver detection, the
corresponding methods are the varieties with respect to
different modes of orbital maneuvering and detection
metrics. Storch estimated the maneuvering parameters
of a collocated satellite in geosynchronous orbit by
using nonlinear least squares [3]. In [4], the energy per
unit mass was computed to detect a space event based

on the technique of a moving window curve fit.
Holzinger & Scheeres presented an object correlation
and maneuver detection method using optimal control
performance metrics [5]. Kelecy & Jah focused on the
detection and reconstruction of single low thrust in-
track maneuvers by using the orbit determination
strategies based on the batch least-squares and
extended Kalman filter (EKF) [6]. However, these
methods are highly relevant to the presupposed
maneuvering mode and a relative short observation

gap.

In this paper, to address the real observed data, we only
consider the common maneuvering modes and
observation scenarios in practical. For an orbital
maneuver, minimization of fuel consumption is
essential because the weight of a payload that can be
carried to the desired orbit depends on this
minimization. Therefore, choices in the modes of
orbital maneuver are limited. The thrust imposed on
the tangential direction is an efficient maneuvering
mode for minimizing fuel consumption, which is
commonly applied in the process of various orbital
maneuvers [7]. In particular, the maneuvering positions
are usually chosen at the apogee and perigee point [7].
The studies in this paper are based on all the above-
mentioned  hypothetical ~ maneuvering  modes.
Furthermore, due to the limited coverage of the
sensors, the small and regular observation gap couldn’t
be guaranteed, which may be from hours to many days.
Therefore, it is more meaningful and expected that the
performance of the proposed maneuver detection
method will be little affected by the observation gap,
especially the large gap. Certainly, we also hope to
reconstruct the maneuvering parameters precisely
when the maneuver event occurs during a small gap.

This paper presents a novel and stepwise algorithm to
handle these problems as follows. In section 2, the
maneuvering modes and maneuvering parameters are
estimated preliminarily according to the change of
semi-major axis and eccentricity. If there is only one
tangential maneuver during the gap from the result, we
formulate the estimation problem of maneuvering
parameters as a non-linear least squares problem. Thus,
a more precise result can be obtained by solving the
constrained non-linear least squares iterative process
using SOCP (Second Order Cone Programming)
algorithm in Section3. Section 4 is the simulation



results and performance analysis. Section 5 is the
conclusion.

2  ESTIMATION OF MANEUVERING
MODE

As we know, the orbits often have the unexpectable
changes due to undertaking the various tasks. The most
frequent orbital maneuvers are implemented to keep
the spacecraft at the prearranged orbit, especially the
semi-major axis a and eccentricity e which determine
the orbital shape. Generally, these two orbital
parameters are controlled more rigorously than any
other parameters, and they are usually not allowed to
fluctuate with respect to the time. The common and
efficient maneuvering mode is to exert an additional
tangential velocity at a proper point or the perigee and
apogee point [7]. However, one tangential maneuver
can’t simultaneously adjust the semi-major axis and
eccentricity arbitrarily, while two tangential maenuvers
at the apogee and perigee can do that. They are both
the common applying maneuvering modes. Therefore,
the maneuvering mode and the corresponding
maneuvering parameters can be estimated preliminarily
according to the change of semi-major axis and
eccentricity.

2.1  One tangential maneuvering mode

If the observed semi-major axis and eccentricities
changed obviously at different times, the maneuver
detection should be taken into account. Based on the
hypothesis of one tangential maneuvering mode, we
should reconstruct the maneuvering velocity as well as
judge that where the maneuver occurs and whether
only one tangential maneuver can realize this change of
these parameters.

According to the perturbation motional formula, a
tangential impulse velocity Av exerted at an arbitrary
point f during the orbit will simultaneously change

the value of the semi-major axis Aa and eccentricity
Ae as Eq. 1:
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Where 7 = ‘/,u/cf , 14=3.98600436x10" m’ / s*is the
earth gravitational constant, f is the true anomaly.
Once the Aa and Ae are known, we can calculate the
maneuvering parameters f and Ay . Dividing the

second equation by the first equation at Eq. 1, we can
obtain that:
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When we want to obtain the sensible values of the
maneuvering true anomaly f and velocity Av , the

solution of Eq. 2 must satisfy:
—1<cos f<1 ?3)

However, Eq. 3 can’t be always satisfied, i.e. only one
tangential maneuver can’t simultancously adjust the
semi-major axis and eccentricity arbitrarily. Therefore,
multiple maneuvers should be applied, one efficient
mode of which is that twice tangential maneuvers at
the apogee and perigee point which could minimize the
fuel consumption.

2.2 Twice tangential maneuvers at the
perigee and apogee

Most of the orbits of space objects have small
eccentricities and can be approximated as circle orbits.

Thus, the item e* in Eq. 1 can be omitted. Eq. 1 can be
transformed into:

nAa =-2(1+2ecos [ +¢ )]/2 Av @

nahe =-2(1+2ecos [ +¢* )71/2 (cosf+e)Av
Firstly, the Av is used to adjust the eccentricity e at
the perigee or the apogee, i.e. f=0" or /=180 .
This maneuvering velocity is denoted as (Ay), .

When f=0", we can get (Av), =(naAe)/2 . When
J =180, (Av), =—(nane)/2-

After the adjusting of eccentricity e, the semi-major
axis a should be modified a value Aa" to adapt the

final change. Aa" includes two parts: the first is
original changed value Aa ; the second is the deviation
—(da),caused by the adjusting of e. Thus, the current

value is Aa” =Aa—(da), . Therefore, when f =0,
Ad" =Aa +(—¢—1)aAe; when [ =180", Aa" =Aa
+(e—1)aAe. In addition, when the signs of Aaq and
Ae are the same, we choose f =0°; while they are
different, we choose f =180". Accordingly, the value
of Aa® will be reduced and the fuel consumption is
saved.

In order to adjust the Aa", we exert an equivalent
tangential velocity (Ay), each once at the apogee and

perigee respectively. In this case, the eccentricity e
will not be changed while adjusting a according to Eq.

4. We can obtain that (Ay), =(;Aq*)/4 . Finally,



twice tangential maneuvers at the perigee and apogee
can be utilized to achieve the arbitrary change of
eccentricity e and the semi-major axis a . The
concrete formats are as follows:

(1) When the sign of Aa and Ae are the same,
Aa" = Aa—(1+e)ale, and the first tangential impulse
Av, is exerted at f =0, the second tangential impulse

Av, is exerted at [ =180, where

_nale nAd’ Aa+(1-e)ale

Av, = + =n
2 4 4 (5)
nAa’ Aa—(1+e)ale
Av, = =n
4 4

(2) When the sign of Aa and Ae are different,
Aa" = Aa—(1—e)ale, and the first tangential impulse

Av, is exerted at f'=180", the second tangential

impulse Av, is exerted at f' =0, where

Aa’ Aa — A
Avl:_naerjLn‘la _,Aa (1Ze)a e
Ad Aa—(1-e)al ©
szzna:n a—(1-e)ale
4 4

Therefore, the common maneuvering modes for
adjusting the eccentricity e and the semi-major axis a
have been introduced. When we get the observations at
different time, the maneuvering mode and parameters
can be reconstructed according to the value of Aa and
Ae. Then, the sensibility and availability of the results
can be further analyzed.

2.3  Analysis of observed data

To verify the effectiveness of our presented maneuver
detection method, some typical orbital observations of
Shenzhou Spaceship are selected for maneuver
detection.

The observations are displayed in the form of the
orbital period, i.e. the times of full circle where the
space object turns around the observation station. The
first data contains a neighbouring observation, and only
the concerned altitude and eccentricity are plotted in
Fig. 1.

We take the aforementioned two maneuvering modes
to analyze the first observed data. The results are listed
in Tab. 1, where X denotes no solution; Mode 1 and
Mode 2 represent the one tangential maneuvee and
twice tangential maneuvers at the perigee and apogee,
respectively.
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Figure 1. Observations at the first time

Table 1. Analysis results of the first observations

Circle 1 to Circle 2 Circle 2 to Circle 16
Maneuver Maneuver [Maneuver [Maneuver
velocity [position velocity  |position
(m/s) F(°) (m/s) f(°)
Mode 1 X X X X
-15.5 180 -17.4 0
Mode 2 -15.5 0 3.9 180

From Tab. 1, we can see that the change of observed
orbits from circle 1 to circle 2 can be achieved by
exerting one -15.5m/s maneuvering velocity at the
apogee and perigee respectively, while only one
tangential maneuver can never realize it. For the
second maneuver from circle 2 to circle 16, it can be
realized by exerting a -17.4m/s impulse velocity at the
perigee and then a 3.9m/s impulse at the apogee. In
addition, the mode 1 still has no solution. Commonly,
it is impossible that the velocity is reduced firstly, and
then increased immediately. The second increase of
velocity may be induced by the observation noise.
Thus, the second maneuver can be equivalent to one
tangential maneuver with about -15m/s impulse
velocity. Therefore, the preliminary analysis result can
be derived: there may be three times continual
maneuvers at the perigee and apogee points. In
addition, the tangential impulse velocity exerted at
each time is about -15m/s.

The second observations are shown in Fig. 2.
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Figure 2. Observations at the second time



The same maneuver detection method is implemented
to analyze the second observations. The results are
shown in Tab. 2.

Table 2. Analysis results of the second observations

Circle 2 to Circle 17 Circle 17 to Circle 18
Maneuver Maneuver |[Maneuver [Maneuver
velocity [position ivelocity  |position
(m/s) f(°) (m/s) F(°)
Mode 1 -31.96 90.04 X X
-15.99 0 3.30 180
Mode 2 -15.96 180 3.29 0

The two maneuvering modes are both available to
conform with the observations from circle 2 to circle
17. The maneuvering velocity in mode 1 is about the
total of twice maneuvering velocities in mode 2.
However, the thrusters should not always change the
magnitude of impulse while concerning the stableness
and difficulty of control and manufacture. So, the
maneuvering velocity in mode 2 more approximates
the analysis results of the first observations and may be
sensible. In addition, the observations from circle 17 to
circle 18 are inclined to suggest that no maneuver
occurs during the gap, and the nonzero values of the
estimated maneuvering velocity mainly results in the
measurement error.

The analysis results of the observations indicate that
our estimation method of the maneuvering mode is
efficient. It can preliminarily deduce the maneuvering
parameters and explicate sensibly for the observations.
A further advantage is that the algorithm is little
affected by the observation gap which ranges from 2
hours to 24 hours in our testing data. In addition, the
method is straightforward. Even for the preliminary
orbits determined based on the coarse observations, a
robust and relative accurate result can be also obtained.

3  PRECISE ESTIMATION OF
MANEUVERING PARAMETERS IN ONE
TANGENTIAL MANEUVERING MODE

If the estimated maneuvering mode indicates that only
one tangential impulse is exerted during the
observation gap, we could reconstruct the maneuvering
parameters more precisely.

3.1 Method of parameter estimation in
orbital maneuvering

Let ¢, and Av denote the maneuvering time and
velocity respectively. v, and v, are the pre-maneuver
velocity vector and the post-maneuver velocity vector

at the time ¢ respectively. The space object

m

maneuvers along the tangential direction, so we can

. ro_ —
derive v/ =v +Avey /Vm , where v —||vm ||2 N CR

denotes the ¢, -norm. r, , v, and » , v, are the

position vector and velocity vector of space object at
the time ¢, and ¢, respectively. f,, g, fl, g, are
the functions of r,, v, and ¢t —¢,. f,, g, f2 ,

g, are the functions of r, , v, and ¢ —¢ [8].
Assuming that the observation noise is zero mean
Gaussian white noise, n(0,Q,) and n(0,0,) denote

the observation noises at the time ¢, and ¢ ,

respectively, where O, and Q, are the noise
covariance.

Let O, =0 = diag[af,af,af,af,af,o-f} in this
paper. Thus, the observed orbital elements in the
presence of noise is denoted by

W | =[] w00 - [ -
[rlT,vlT JT +n(0,0,) .

The orbital maneuvering process can be represented by
the following equation:

[ T,
l':|=|: 1:|+n(O’Q1):
LV V|

—le gZI ﬁl gII ro 0
_fzI gzl}ﬂifll gll:||:vo:|+|:Avovm/vm:|J+n(0’Ql)

X r
?H °}+n(o,Qo)
| Vo v,
@)

r 1 I|r
where { " } ={f1 g.l }{ 0}. Here, the perturbation
v Mgl || v,

m

forces are not considered.

The first equation in the maneuvering model of Eq. 7 is

Ul

,} =@(r),v,,Av,t, ) +n(0,0,).
vl

!

abbreviated to [

Therefore, the parameter estimation problem can be
treated as a non-linear least square problem in Eq. 8:

[AD,7 ]=

’ T !

v 7
arggnin(|: 1,}—¢(r0,vo,Av,tm)J o' (|: 1,}—<D(r0,v0,Av,tm)J

vt | | W] v

®)
where the unknown  parameter vector s
& =[r,,v,,Av,1,] . Before the Gauss-Newton iterative

algorithm being applied, we need compute the
linearization form of @(r,,v,,Av,? ) at the parameter

vector &:



H(&)=[H(r,),H(,).H(Av),H(t,)]

op 00 o0 o ©)
or,  ov, oAV’ ot,

The calculation of partial derivatives has no difficulty
but is complicated, so we don’t give the concrete forms
due to the limited length of paper.

The initial value &(0) of the parameter vector &
directly affects the convergence of the iterative
algorithm. It is important to choose an appropriate
initial value based on the prior information of the
correlated orbits. In this paper, the observed values of

¥y, v, at the time ¢, can be taken as the initial values

of r,, v,. Moreover, let the observed orbit a and orbit
b propagate in the time interval [z‘o,tl]. We calculate

the intersection time ¢/, when the two orbits have the

minimum module difference of the position vectors
through cross propagation. Thus, ¢/ is chosen as the

initial iterative value of ¢ , and the corresponding

module value AV’ of the two velocity vectors’

difference at the intersection point is chosen as the
initial value of maneuvering velocity Av.

In order to obtain a more sensible and accurate result,
the constraints for the unknown parameter vector &
should be applied in the iterative process. The
constrained iterative form for solving the non-linear
least squares problem is:

!
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CRLB'” of estimated maneuver time(s)
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CRLB'” of estimated maneuver time(s)

rn+l) | r - 30,1,
vo(n+1)| | v, | |30,1,
st. <0<Av(n+1)<Av,
t, <t (n+1)<g

(10)

where Av__is the upper bound of the maneuvering
velocity, 1, is a 3-dimensional full-1 vector. The

iterative process is an optimization problem, which can
be handled by the SOCP algorithm [9]. Therefore, the

maneuvering time 7, and the maneuvering velocity

AV can be estimated by multiple iterations.

3.2 Detection performance of orbital
maneuver

Using Eq. 9, Or,/0¢ and Ov,/0& , we can easily
obtain the Cramer-Rao Lower Bound (CRLB) of the
estimated parameters ¢, and Av . Here, two common
gaps of the observations are used for the performance
analysis, i.e.: one case is that the surveillance system
observes two adjacent orbits of an object, whose time
interval is about an orbital period (about 2 hours for
LEO object); the other case is that the neighbouring
ascending and descending arcs are observed, whose
time interval is about 12 hours. In this paper, the
simulation parameters are set as follows: the initial

orbit element: Semi-major axis a=7000km
Eccentricity e =0.01, Inclination i = 70", Longitude of
the ascending node Q=170", Argument of periapsis
®=30", Mean anomaly M =30"; the observation
errors are ¢, =10m and ¢, =0.1m/s. Subsequently,

>

we calculate the CRLBs in the simulation. For the non-
maneuvering object, the CRLB’s square root of the
maneuvering velocity is 0.1m/s, which is similar to the
observation error. For the maneuvering objects, the
distribution of the CRLBs’ square root of the estimated
maneuvering time and maneuvering velocity are shown
in Fig. 3.

5
Maneuver time(h)

Maneuver velocity(m/s)

(a) The CRLBs’ square root of the estimated maneuvering time
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Figure 3. The distribution of the CRLBs’ square root of the estimated maneuvering time and velocity

Fig. 3 indicates that the estimated precision fluctuates performance and parameter estimation precision of the
with respect to the maneuvering time instead of proposed algorithm. The result is compared with
changing monotonously. With the increasing CRLB. The parameters in the simulation are the same
maneuvering velocity, the parameters will be estimated with aforementioned setting.

with a higher precision. In addition, the estimation

.. . . Firstly, we ca out the maneuver detection for the
precision for a large gap ¢ —¢, of the observations is Y Ty

) ) non-maneuver object. The cumulative probability
slightly higher than that for a small one. distribution of the estimated maneuver velocity is

Furthermore, Monte Carlo simulations are carried out statistically shown in Tab. 3.

to examine and analyze the maneuver detection
Table 3. The cumulative probability distribution of the estimated maneuvering velocity for the non-maneuvering object

Estimated maneuvering velocity (m/s) <1073 <102  <0.1 <0.3 <0.6

Cumulative probability (2h) 0.4500 0.4550 0.6500 0.9450 1

Cumulative probability (12h) 0.5050 0.5250 0.7000 0.9950 1
Tab. 3 indicates that almost all the estimated the maneuver object. In this paper, when the estimation
maneuvering velocities are less than 3¢ , which result biases satisfy (¢, )<60s » J(Av)<03m/s , we
from the observations error. In other words, there is assume that the orbital maneuver detection is correct.
quite a small probability that a non-maneuver object is Only the correct maneuver detection is used to evaluate
identified as a maneuver one. the accuracy of the parameter estimation. The result is

. . shown in Fig. 4.
Subsequently, the maneuver detection is carried out for &
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Figure 4. The detection performance of the proposed maneuver detection algorithm

Fig. 4 suggests that the detection performance is
closely related with the real maneuvering time and the
maneuvering velocity. Comparing the simulation
results with the CRLBs, we can find that it will acquire
a high correct detection probability where the CRLBs
of the maneuvering time and velocity are low. When
the maneuvering velocity exceeds 5m/s, the correct
maneuvering detection probability can achieve 1. With
the increasing maneuvering velocity, the estimation
accuracy of the maneuvering time is improved. But the
estimation accuracy of the maneuvering velocity is
more sensitive to the real maneuvering time, which
coincides with the trend of the CRLB. In addition, Fig.
4 also shows that the larger gap interval of the
observations leads to a higher estimation accuracy than
the smaller one, but the correct detection probability is
much lower. The reasons behind this outcome are that
it is much more difficult to get an accurate initial
iterative value in the case of the large gap interval than
the small gap. The larger difference between the initial
iterative value and the real value will result in a higher
probability of the non-convergence and local
convergence problem. This is a main reason why the
larger gap of the observations makes the orbital
maneuver detection more difficult.

4 Conclusions

Maneuver detection plays an important role in space
surveillance. This paper presents a novel method for
addressing the maneuver detection problem under the
hypothesis that only the tangential maneuvers exist.
We preliminarily estimate the maneuvering mode
according to the changes of the observed semi-major
axis and eccentricity. This method is very convenient
to handle the practical data and will be little affected by
the observation gap. Some typical observations are
used to verify the robust and efficiency of our
presented algorithm. If estimated maneuvering mode
shows that only one tangential maneuver occurs during
the gap, the reconstruction problem of the maneuvering
parameters can be transformed into a non-linear least
squares problem. To obtain a stable and precise result
of the least squares problem, some prior constrains are
incorporated into the iterative processes. The SOCP
algorithm is utilized to calculate the optimal problem.
Finally, the performance of the proposed method is
also analyzed in detail, and extensive simulations are
carried out to validate the effectiveness of the
algorithm. However, the proposed algorithm is a
general methodology, which can be also adapted and
extended to many different situations.
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